151
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genetic analysis of genome-wide variation in human gene expression

      Nature
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic dissection of transcriptional regulation in budding yeast.

          To begin to understand the genetic architecture of natural variation in gene expression, we carried out genetic linkage analysis of genomewide expression patterns in a cross between a laboratory strain and a wild strain of Saccharomyces cerevisiae. Over 1500 genes were differentially expressed between the parent strains. Expression levels of 570 genes were linked to one or more different loci, with most expression levels showing complex inheritance patterns. The loci detected by linkage fell largely into two categories: cis-acting modulators of single genes and trans-acting modulators of many genes. We found eight such trans-acting loci, each affecting the expression of a group of 7 to 94 genes of related function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetics of gene expression surveyed in maize, mouse and man.

            Treating messenger RNA transcript abundances as quantitative traits and mapping gene expression quantitative trait loci for these traits has been pursued in gene-specific ways. Transcript abundances often serve as a surrogate for classical quantitative traits in that the levels of expression are significantly correlated with the classical traits across members of a segregating population. The correlation structure between transcript abundances and classical traits has been used to identify susceptibility loci for complex diseases such as diabetes and allergic asthma. One study recently completed the first comprehensive dissection of transcriptional regulation in budding yeast, giving a detailed glimpse of a genome-wide survey of the genetics of gene expression. Unlike classical quantitative traits, which often represent gross clinical measurements that may be far removed from the biological processes giving rise to them, the genetic linkages associated with transcript abundance affords a closer look at cellular biochemical processes. Here we describe comprehensive genetic screens of mouse, plant and human transcriptomes by considering gene expression values as quantitative traits. We identify a gene expression pattern strongly associated with obesity in a murine cross, and observe two distinct obesity subtypes. Furthermore, we find that these obesity subtypes are under the control of different loci.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors.

              Natural genetic variation can cause significant differences in gene expression, but little is known about the polymorphisms that affect gene regulation. We analyzed regulatory variation in a cross between laboratory and wild strains of Saccharomyces cerevisiae. Clustering and linkage analysis defined groups of coregulated genes and the loci involved in their regulation. Most expression differences mapped to trans-acting loci. Positional cloning and functional assays showed that polymorphisms in GPA1 and AMN1 affect expression of genes involved in pheromone response and daughter cell separation, respectively. We also asked whether particular classes of genes were more likely to contain trans-regulatory polymorphisms. Notably, transcription factors showed no enrichment, and trans-regulatory variation seems to be broadly dispersed across classes of genes with different molecular functions.
                Bookmark

                Author and article information

                Journal
                10.1038/nature02797
                http://www.springer.com/tdm

                Comments

                Comment on this article