13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance

      Nature Communications
      Springer Nature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.

          Identification of genes influencing a phenotype of interest is frequently achieved through genetic screening by RNA interference (RNAi) or knockouts. However, RNAi may only achieve partial depletion of gene activity, and knockout-based screens are difficult in diploid mammalian cells. Here we took advantage of the efficiency and high throughput of genome editing based on type II, clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems to introduce genome-wide targeted mutations in mouse embryonic stem cells (ESCs). We designed 87,897 guide RNAs (gRNAs) targeting 19,150 mouse protein-coding genes and used a lentiviral vector to express these gRNAs in ESCs that constitutively express Cas9. Screening the resulting ESC mutant libraries for resistance to either Clostridium septicum alpha-toxin or 6-thioguanine identified 27 known and 4 previously unknown genes implicated in these phenotypes. Our results demonstrate the potential for efficient loss-of-function screening using the CRISPR-Cas9 system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of poly(ADP-ribose) formation in DNA repair.

            The abundant nuclear enzyme poly(ADP-ribose) polymerase catalyses the synthesis of poly(ADP-ribose) from nicotinamide adenine dinucleotide (NAD+). This protein has an N-terminal DNA-binding domain containing two zinc-fingers, which is linked to the C-terminal NAD(+)-binding domain by a short region containing several glutamic acid residues that are sites of auto-poly(ADP-ribosyl)ation. The intracellular production of poly(ADP-ribose) is induced by agents that generate strand interruptions in DNA. The branched homopolymer chains may attain a size of 200-300 residues but are rapidly degraded after synthesis. The function of poly(ADP-ribose) synthesis is not clear, although it seems to be required for DNA repair. Here we describe a human cell-free system that enables the role of poly(ADP-ribose) synthesis in DNA repair to be characterized. The results indicate that unmodified polymerase molecules bind tightly to DNA strand breaks; auto-poly(ADP-ribosyl)ation of the protein then effects its release and allows access to lesions for DNA repair enzymes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage.

              The molecular role of poly (ADP-ribose) polymerase-1 in DNA repair is unclear. Here, we show that the single-strand break repair protein XRCC1 is rapidly assembled into discrete nuclear foci after oxidative DNA damage at sites of poly (ADP-ribose) synthesis. Poly (ADP-ribose) synthesis peaks during a 10 min treatment with H2O2 and the appearance of XRCC1 foci peaks shortly afterwards. Both sites of poly (ADP-ribose) and XRCC1 foci decrease to background levels during subsequent incubation in drug-free medium, consistent with the rapidity of the single-strand break repair process. The formation of XRCC1 foci at sites of poly (ADP-ribose) was greatly reduced by mutation of the XRCC1 BRCT I domain that physically interacts with PARP-1. Moreover, we failed to detect XRCC1 foci in Adprt1-/- MEFs after treatment with H2O2. These data demonstrate that PARP-1 is required for the assembly or stability of XRCC1 nuclear foci after oxidative DNA damage and suggest that the formation of these foci is mediated via interaction with poly (ADP-ribose). These results support a model in which the rapid activation of PARP-1 at sites of DNA strand breakage facilitates DNA repair by recruiting the molecular scaffold protein, XRCC1.
                Bookmark

                Author and article information

                Journal
                10.1038/s41467-018-03917-2
                http://creativecommons.org/licenses/by/4.0

                Comments

                Comment on this article