28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global F ST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of reduction in population size using data from microsatellite loci.

          We demonstrate that the mean ratio of the number of alleles to the range in allele size, which we term M, calculated from a population sample of microsatellite loci, can be used to detect reductions in population size. Using simulations, we show that, for a general class of mutation models, the value of M decreases when a population is reduced in size. The magnitude of the decrease is positively correlated with the severity and duration of the reduction in size. We also find that the rate of recovery of M following a reduction in size is positively correlated with post-reduction population size, but that recovery occurs in both small and large populations. This indicates that M can distinguish between populations that have been recently reduced in size and those which have been small for a long time. We employ M to develop a statistical test for recent reductions in population size that can detect such changes for more than 100 generations with the post-reduction demographic scenarios we examine. We also compute M for a variety of populations and species using microsatellite data collected from the literature. We find that the value of M consistently predicts the reported demographic history for these populations. This method, and others like it, promises to be an important tool for the conservation and management of populations that are in need of intervention or recovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The estimation of population differentiation with microsatellite markers.

            Microsatellite markers are routinely used to investigate the genetic structuring of natural populations. The knowledge of how genetic variation is partitioned among populations may have important implications not only in evolutionary biology and ecology, but also in conservation biology. Hence, reliable estimates of population differentiation are crucial to understand the connectivity among populations and represent important tools to develop conservation strategies. The estimation of differentiation is c from Wright's FST and/or Slatkin's RST, an FST -analogue assuming a stepwise mutation model. Both these statistics have their drawbacks. Furthermore, there is no clear consensus over their relative accuracy. In this review, we first discuss the consequences of different temporal and spatial sampling strategies on differentiation estimation. Then, we move to statistical problems directly associated with the estimation of population structuring itself, with particular emphasis on the effects of high mutation rates and mutation patterns of microsatellite loci. Finally, we discuss the biological interpretation of population structuring estimates.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Disturbance, patchiness, and diversity in streams

              P. Lake (2000)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                8 September 2011
                : 6
                : 9
                : e23822
                Affiliations
                [1 ]Department of Biology, University of Padova, Padova, Italy
                [2 ]Department of Environmental Sciences, University of Parma, Parma, Italy
                [3 ]Tolmin Angling Association, Most na Soci, Slovenia
                [4 ]Station Biologique de la Tour du Valat, Arles, France
                Barnard College, Columbia University, United States of America
                Author notes

                Conceived and designed the experiments: JMP SV DJ AC. Performed the experiments: JMP. Analyzed the data: JMP LZ. Contributed reagents/materials/analysis tools: LZ AC. Wrote the paper: JMP SV LZ GDL AC.

                Article
                PONE-D-11-06179
                10.1371/journal.pone.0023822
                3169565
                21931617
                2cd59f66-9b49-4791-aedb-cbafd0cf2028
                Pujolar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 April 2011
                : 26 July 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Ecology
                Ecological Environments
                Freshwater Environments
                Ecological Metrics
                Species Diversity
                Biodiversity
                Freshwater Ecology
                Global Change Ecology
                Evolutionary Biology
                Evolutionary Ecology
                Evolutionary Genetics
                Population Genetics
                Marine Biology
                Freshwater Ecology
                Zoology
                Ichthyology
                Earth Sciences
                Atmospheric Science
                Climatology
                Climate Change
                Marine and Aquatic Sciences
                Freshwater Ecology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article