2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metal, metal oxide and polymeric nanoformulations for the inhibition of bacterial quorum sensing

      , ,
      Drug Discovery Today
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Quorum sensing signal–response systems in Gram-negative bacteria

          Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progress in and promise of bacterial quorum sensing research

            This Review highlights how we can build upon the relatively new and rapidly developing field of research into bacterial quorum sensing (QS). We now have a depth of knowledge about how bacteria use QS signals to communicate with each other and to coordinate their activities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention

              In living organisms, biofilms are defined as complex communities of bacteria residing within an exopolysaccharide matrix that adheres to a surface. In the clinic, they are typically the cause of chronic, nosocomial, and medical device-related infections. Due to the antibiotic-resistant nature of biofilms, the use of antibiotics alone is ineffective for treating biofilm-related infections. In this review, we present a brief overview of concepts of bacterial biofilm formation, and current state-of-the-art therapeutic approaches for preventing and treating biofilms. Also, we have reviewed the prevalence of such infections on medical devices and discussed the future challenges that need to be overcome in order to successfully treat biofilms using the novel technologies being developed.
                Bookmark

                Author and article information

                Journal
                Drug Discovery Today
                Drug Discovery Today
                Elsevier BV
                13596446
                January 2023
                January 2023
                : 28
                : 1
                : 103392
                Article
                10.1016/j.drudis.2022.103392
                98fae789-7e9f-49e5-b1db-424c9406c868
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article