0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum lipid metabolism characteristics and potential biomarkers in patients with unilateral sudden sensorineural hearing loss

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Glycerophospholipids (GPLs) are essential for cell membrane structure and function. Sphingomyelin and its metabolites regulate cell growth, apoptosis, and stress responses. This study aimed to investigate lipid metabolism in patients experiencing sudden sensorineural hearing loss across all frequencies (AF-SSNHL).

          Methods

          The study included 60 patients diagnosed with unilateral AF-SSNHL, among whom 30 patients had a level of hearing improvement ≥ 15 dB after 6 months of follow-up. A propensity score-matched (2:1) control group was used. Liquid chromatography‒mass spectrometry based untargeted lipidomics analysis combined with multivariate statistics was performed to investigate the lipids change. The “lipidome” R package and weighted gene co-expression network analysis (WGCNA) were utilised to assess the lipids’ structural features and the association between lipids and hearing.

          Results

          Lipidomics successfully differentiated the AF-SSNHL group from the control group, identifying 17 risk factors, mainly including phosphatidylcholine (PC), phosphatidylethanolamine (PE), and related metabolites. The ratios of lysophosphatidylcholine/PC, lysophosphatidylethanolamine/PE, and lysodimethylphosphatidylethanolamine/PE were upregulated, while some glycerophospholipid (GPL)-plasmalogens were downregulated in the AF-SSNHL group, indicating abnormal metabolism of GPLs. Trihexosylceramide (d34:1), PE (18:1e_22:5), and sphingomyelin (d40:3) were significantly different between responders and nonresponders, and positively correlated with hearing improvement. Additionally, the results of the WGCNA also suggested that partial GPL-plasmalogens were positively associated with hearing improvement.

          Conclusion

          AF-SSNHL patients exhibited abnormally high blood lipids and pronounced GPLs metabolic abnormalities. Sphingolipids and GPL-plasmalogens had an association with the level of hearing improvement. By understanding the lipid changes, clinicians may be able to predict the prognosis of hearing recovery and personalize treatment approaches.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12944-024-02189-8.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Membrane lipids: where they are and how they behave.

          Throughout the biological world, a 30 A hydrophobic film typically delimits the environments that serve as the margin between life and death for individual cells. Biochemical and biophysical findings have provided a detailed model of the composition and structure of membranes, which includes levels of dynamic organization both across the lipid bilayer (lipid asymmetry) and in the lateral dimension (lipid domains) of membranes. How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functionalities of their individual membranes?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A general framework for weighted gene co-expression network analysis.

            Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections between the nodes in such networks. An important question is whether it is biologically meaningful to encode gene co-expression using binary information (connected=1, unconnected=0). We describe a general framework for ;soft' thresholding that assigns a connection weight to each gene pair. This leads us to define the notion of a weighted gene co-expression network. For soft thresholding we propose several adjacency functions that convert the co-expression measure to a connection weight. For determining the parameters of the adjacency function, we propose a biologically motivated criterion (referred to as the scale-free topology criterion). We generalize the following important network concepts to the case of weighted networks. First, we introduce several node connectivity measures and provide empirical evidence that they can be important for predicting the biological significance of a gene. Second, we provide theoretical and empirical evidence that the ;weighted' topological overlap measure (used to define gene modules) leads to more cohesive modules than its ;unweighted' counterpart. Third, we generalize the clustering coefficient to weighted networks. Unlike the unweighted clustering coefficient, the weighted clustering coefficient is not inversely related to the connectivity. We provide a model that shows how an inverse relationship between clustering coefficient and connectivity arises from hard thresholding. We apply our methods to simulated data, a cancer microarray data set, and a yeast microarray data set.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical Practice Guideline: Sudden Hearing Loss (Update)

              Sudden hearing loss is a frightening symptom that often prompts an urgent or emergent visit to a health care provider. It is frequently but not universally accompanied by tinnitus and/or vertigo. Sudden sensorineural hearing loss affects 5 to 27 per 100,000 people annually, with about 66,000 new cases per year in the United States. This guideline update provides evidence-based recommendations for the diagnosis, management, and follow-up of patients who present with sudden hearing loss. It focuses on sudden sensorineural hearing loss in adult patients aged ≥18 years and primarily on those with idiopathic sudden sensorineural hearing loss. Prompt recognition and management of sudden sensorineural hearing loss may improve hearing recovery and patient quality of life. The guideline update is intended for all clinicians who diagnose or manage adult patients who present with sudden hearing loss. The purpose of this guideline update is to provide clinicians with evidence-based recommendations in evaluating patients with sudden hearing loss and sudden sensorineural hearing loss, with particular emphasis on managing idiopathic sudden sensorineural hearing loss. The guideline update group recognized that patients enter the health care system with sudden hearing loss as a nonspecific primary complaint. Therefore, the initial recommendations of this guideline update address distinguishing sensorineural hearing loss from conductive hearing loss at the time of presentation with hearing loss. They also clarify the need to identify rare, nonidiopathic sudden sensorineural hearing loss to help separate those patients from those with idiopathic sudden sensorineural hearing loss, who are the target population for the therapeutic interventions that make up the bulk of the guideline update. By focusing on opportunities for quality improvement, this guideline should improve diagnostic accuracy, facilitate prompt intervention, decrease variations in management, reduce unnecessary tests and imaging procedures, and improve hearing and rehabilitative outcomes for affected patients. Consistent with the American Academy of Otolaryngology–Head and Neck Surgery Foundation’s “Clinical Practice Guideline Development Manual, Third Edition” (Rosenfeld et al. Otolaryngol Head Neck Surg. 2013;148[1]:S1-S55), the guideline update group was convened with representation from the disciplines of otolaryngology–head and neck surgery, otology, neurotology, family medicine, audiology, emergency medicine, neurology, radiology, advanced practice nursing, and consumer advocacy. A systematic review of the literature was performed, and the prior clinical practice guideline on sudden hearing loss was reviewed in detail. Key Action Statements (KASs) were updated with new literature, and evidence profiles were brought up to the current standard. Research needs identified in the original clinical practice guideline and data addressing them were reviewed. Current research needs were identified and delineated. The guideline update group made strong recommendations for the following: (KAS 1) Clinicians should distinguish sensorineural hearing loss from conductive hearing loss when a patient first presents with sudden hearing loss. (KAS 7) Clinicians should educate patients with sudden sensorineural hearing loss about the natural history of the condition, the benefits and risks of medical interventions, and the limitations of existing evidence regarding efficacy. (KAS 13) Clinicians should counsel patients with sudden sensorineural hearing loss who have residual hearing loss and/or tinnitus about the possible benefits of audiologic rehabilitation and other supportive measures. These strong recommendations were modified from the initial clinical practice guideline for clarity and timing of intervention. The guideline update group made strong recommendations against the following: (KAS 3) Clinicians should not order routine computed tomography of the head in the initial evaluation of a patient with presumptive sudden sensorineural hearing loss. (KAS 5) Clinicians should not obtain routine laboratory tests in patients with sudden sensorineural hearing loss. (KAS 11) Clinicians should not routinely prescribe antivirals, thrombolytics, vasodilators, or vasoactive substances to patients with sudden sensorineural hearing loss. The guideline update group made recommendations for the following: (KAS 2) Clinicians should assess patients with presumptive sudden sensorineural hearing loss through history and physical examination for bilateral sudden hearing loss, recurrent episodes of sudden hearing loss, and/or focal neurologic findings. (KAS 4) In patients with sudden hearing loss, clinicians should obtain, or refer to a clinician who can obtain, audiometry as soon as possible (within 14 days of symptom onset) to confirm the diagnosis of sudden sensorineural hearing loss. (KAS 6) Clinicians should evaluate patients with sudden sensorineural hearing loss for retrocochlear pathology by obtaining magnetic resonance imaging or auditory brainstem response. (KAS 10) Clinicians should offer, or refer to a clinician who can offer, intratympanic steroid therapy when patients have incomplete recovery from sudden sensorineural hearing loss 2 to 6 weeks after onset of symptoms. (KAS 12) Clinicians should obtain follow-up audiometric evaluation for patients with sudden sensorineural hearing loss at the conclusion of treatment and within 6 months of completion of treatment. These recommendations were clarified in terms of timing of intervention and audiometry and method of retrocochlear workup. The guideline update group offered the following KASs as options: (KAS 8) Clinicians may offer corticosteroids as initial therapy to patients with sudden sensorineural hearing loss within 2 weeks of symptom onset. (KAS 9a) Clinicians may offer, or refer to a clinician who can offer, hyperbaric oxygen therapy combined with steroid therapy within 2 weeks of onset of sudden sensorineural hearing loss. (KAS 9b) Clinicians may offer, or refer to a clinician who can offer, hyperbaric oxygen therapy combined with steroid therapy as salvage therapy within 1 month of onset of sudden sensorineural hearing loss. Incorporation of new evidence profiles to include quality improvement opportunities, confidence in the evidence, and differences of opinion Included 10 clinical practice guidelines, 29 new systematic reviews, and 36 new randomized controlled trials Highlights the urgency of evaluation and initiation of treatment, if treatment is offered, by emphasizing the time from symptom occurrence Clarification of terminology by changing potentially unclear statements; use of the term sudden sensorineural hearing loss to mean idiopathic sudden sensorineural hearing loss to emphasize that >90% of sudden sensorineural hearing loss is idiopathic sudden sensorineural hearing loss and to avoid confusion in nomenclature for the reader Changes to the KASs from the original guideline: KAS 1—When a patient first presents with sudden hearing loss, conductive hearing loss should be distinguished from sensorineural. KAS 2—The utility of history and physical examination when assessing for modifying factors is emphasized. KAS 3—The word “routine” is added to clarify that this statement addresses nontargeted head computerized tomography scan that is often ordered in the emergency room setting for patients presenting with sudden hearing loss. It does not refer to targeted scans, such as temporal bone computerized tomography scan, to assess for temporal bone pathology. KAS 4—The importance of audiometric confirmation of hearing status as soon as possible and within 14 days of symptom onset is emphasized. KAS 5—New studies were added to confirm the lack of benefit of nontargeted laboratory testing in sudden sensorineural hearing loss. KAS 6—Audiometric follow-up is excluded as a reasonable workup for retrocochlear pathology. Magnetic resonance imaging, computerized tomography scan if magnetic resonance imaging cannot be done, and, secondarily, auditory brainstem response evaluation are the modalities recommended. A time frame for such testing is not specified, nor is it specified which clinician should be ordering this workup; however, it is implied that it would be the general or subspecialty otolaryngologist. KAS 7—The importance of shared decision making is highlighted, and salient points are emphasized. KAS 8—The option for corticosteroid intervention within 2 weeks of symptom onset is emphasized. KAS 9—Changed to KAS 9A and 9B. Hyperbaric oxygen therapy remains an option but only when combined with steroid therapy for either initial treatment (9A) or salvage therapy (9B). The timing of initial therapy is within 2 weeks of onset, and that of salvage therapy is within 1 month of onset of sudden sensorineural hearing loss. KAS 10—Intratympanic steroid therapy for salvage is recommended within 2 to 6 weeks following onset of sudden sensorineural hearing loss. The time to treatment is defined and emphasized. KAS 11—Antioxidants were removed from the list of interventions that the clinical practice guideline recommends against using. KAS 12—Follow-up audiometry at conclusion of treatment and also within 6 months posttreatment is added. KAS 13—This statement on audiologic rehabilitation includes patients who have residual hearing loss and/or tinnitus who may benefit from treatment. Addition of an algorithm outlining KASs Enhanced emphasis on patient education and shared decision making with tools provided to assist in same
                Bookmark

                Author and article information

                Contributors
                zjgzy052@njucm.edu.cn
                ymfeng@sjtu.edu.cn
                Journal
                Lipids Health Dis
                Lipids Health Dis
                Lipids in Health and Disease
                BioMed Central (London )
                1476-511X
                29 June 2024
                29 June 2024
                2024
                : 23
                : 205
                Affiliations
                [1 ]Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, ( https://ror.org/0220qvk04) 600 Yishan Road, Xuhui District, Shanghai, China
                [2 ]Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
                [3 ]GRID grid.233520.5, ISNI 0000 0004 1761 4404, Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, , Fourth Military Medical University, ; Xi’an, Shaanxi Province China
                [4 ]Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Hangzhou Normal University, ( https://ror.org/01bkvqx83) Hangzhou, Zhejiang Province China
                [5 ]Department of Otolaryngology-Head and Neck Surgery, Zhangjiagang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, ( https://ror.org/04523zj19) Zhangjiagang, Jiangsu Province China
                Article
                2189
                10.1186/s12944-024-02189-8
                11218322
                38951804
                7435c730-c05b-4061-9137-d90f5a73ae05
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 22 December 2023
                : 16 June 2024
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 82171139
                Funded by: Shanghai Municipal Commission of Science and Technology
                Award ID: 18DZ2260200
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Biochemistry
                sudden sensorineural hearing loss,lipidomics,risk factors,biomarkers
                Biochemistry
                sudden sensorineural hearing loss, lipidomics, risk factors, biomarkers

                Comments

                Comment on this article