17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intranasal insulin modulates cerebrospinal fluid markers of neuroinflammation in mild cognitive impairment and Alzheimer’s disease: a randomized trial

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intranasal insulin (INI) has shown promise as a treatment for Alzheimer’s disease (AD) in pilot clinical trials. In a recent phase 2 trial, participants with mild cognitive impairment (MCI) or AD who were treated with INI with one of two delivery devices showed improved cerebral spinal fluid (CSF) biomarker profiles and slower symptom progression compared with placebo. In the cohort which showed benefit, we measured changes in CSF markers of inflammation, immune function and vascular integrity and assessed their relationship with changes in cognition, brain volume, and CSF amyloid and tau concentrations. The insulin-treated group had increased CSF interferon-γ (p = 0.032) and eotaxin (p = 0.049), and reduced interleukin-6 (p = 0.048) over the 12 month trial compared to placebo. Trends were observed for increased CSF macrophage-derived chemokine for the placebo group (p = 0.083), and increased interleukin-2 in the insulin-treated group (p = 0.093). Insulin-treated and placebo groups showed strikingly different patterns of associations between changes in CSF immune/inflammatory/vascular markers and changes in cognition, brain volume, and amyloid and tau concentrations. In summary, INI treatment altered the typical progression of markers of inflammation and immune function seen in AD, suggesting that INI may promote a compensatory immune response associated with therapeutic benefit.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease

          In 2011, the National Institute on Aging and Alzheimer’s Association created separate diagnostic recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer’s disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and Alzheimer’s Association to update and unify the 2011 guidelines. This unifying update is labeled a “research framework” because its intended use is for observational and interventional research, not routine clinical care. In the National Institute on Aging and Alzheimer’s Association Research Framework, Alzheimer’s disease (AD) is defined by its underlying pathologic processes that can be documented by postmortem examination or in vivo by biomarkers. The diagnosis is not based on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the definition of AD in living people from a syndromal to a biological construct. The research framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of β amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a continuum, and cognitive staging may be accomplished using continuous measures. However, we also outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to stress that this framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research framework has the potential to be misused. Therefore, we emphasize, first, it is premature and inappropriate to use this research framework in general medical practice. Second, this research framework should not be used to restrict alternative approaches to hypothesis testing that do not use biomarkers. There will be situations where biomarkers are not available or requiring them would be counterproductive to the specific research goals (discussed in more detail later in the document). Thus, biomarker-based research should not be considered a template for all research into age-related cognitive impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research goals of a study. Importantly, this framework should be examined in diverse populations. Although it is possible that β-amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD as a unique neurodegenerative disease among different disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more precise approach to interventional trials where specific pathways can be targeted in the disease process and in the appropriate people.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers.

            In 2010, we put forward a hypothetical model of the major biomarkers of Alzheimer's disease (AD). The model was received with interest because we described the temporal evolution of AD biomarkers in relation to each other and to the onset and progression of clinical symptoms. Since then, evidence has accumulated that supports the major assumptions of this model. Evidence has also appeared that challenges some of our assumptions, which has allowed us to modify our original model. Refinements to our model include indexing of individuals by time rather than clinical symptom severity; incorporation of interindividual variability in cognitive impairment associated with progression of AD pathophysiology; modifications of the specific temporal ordering of some biomarkers; and recognition that the two major proteinopathies underlying AD biomarker changes, amyloid β (Aβ) and tau, might be initiated independently in sporadic AD, in which we hypothesise that an incident Aβ pathophysiology can accelerate antecedent limbic and brainstem tauopathy. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Inflammation as a central mechanism in Alzheimer's disease

              Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by cognitive decline and the presence of two core pathologies, amyloid β plaques and neurofibrillary tangles. Over the last decade, the presence of a sustained immune response in the brain has emerged as a third core pathology in AD. The sustained activation of the brain's resident macrophages (microglia) and other immune cells has been demonstrated to exacerbate both amyloid and tau pathology and may serve as a link in the pathogenesis of the disorder. In the following review, we provide an overview of inflammation in AD and a detailed coverage of a number of microglia-related signaling mechanisms that have been implicated in AD. Additional information on microglia signaling and a number of cytokines in AD are also reviewed. We also review the potential connection of risk factors for AD and how they may be related to inflammatory mechanisms.
                Bookmark

                Author and article information

                Journal
                Scientific Reports
                Sci Rep
                Springer Science and Business Media LLC
                2045-2322
                December 2022
                January 25 2022
                December 2022
                : 12
                : 1
                Article
                10.1038/s41598-022-05165-3
                4b345029-b357-4283-9c2e-f5df8ecd724c
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article

                scite_

                Similar content138

                Cited by21

                Most referenced authors5,106