19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autophagy in the context of the cellular membrane-trafficking system: the enigma of Atg9 vesicles

      review-article
      Biochemical Society Transactions
      Portland Press Ltd.
      autophagy, endoplasmic reticulum, trafficking

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macroautophagy is an intracellular degradation system that involves the de novo formation of membrane structures called autophagosomes, although the detailed process by which membrane lipids are supplied during autophagosome formation is yet to be elucidated. Macroautophagy is thought to be associated with canonical membrane trafficking, but several mechanistic details are still missing. In this review, the current understanding and potential mechanisms by which membrane trafficking participates in macroautophagy are described, with a focus on the enigma of the membrane protein Atg9, for which the proximal mechanisms determining its movement are disputable, despite its key role in autophagosome formation.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum

          Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain–containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation.

            Autophagy is a bulk degradation process in eukaryotic cells and has fundamental roles in cellular homeostasis.The origin and source of autophagosomal membranes are long-standing questions in the field. Using electron microscopy, we show that, in mammalian culture cells, the endoplasmic reticulum (ER) associates with early autophagic structures called isolation membranes (IMs). Overexpression of an Atg4B mutant, which causes defects in autophagosome formation, induces the accumulation of ER-IM complexes. Electron tomography revealed that the ER-IM complex appears as a subdomain of the ER that formed a cradle encircling the IM, and showed that both ER and isolation membranes are interconnected.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              3D tomography reveals connections between the phagophore and endoplasmic reticulum.

              Autophagosomes have been reported to form in the vicinity of the endoplasmic reticulum (ER). In many cases, the phagophore membrane is observed between two cisternae of rough ER, but it is not known whether these two membranes are directly connected. To investigate the relationship of the phagophore membrane and the ER, we used electron microscopic tomography of serum and amino acid starved normal rat kidney cells. The cells were fixed in glutaraldehyde and reduced osmium tetroxide and embedded in Epon. Dual axis tilt image series were acquired from two successive 250-nm sections. To analyze the three-dimensional (3D) morphology of phagophores and the associated rough ER, 3D tomograms were used to model the ER and phagophore membranes. The tomographic reconstructions revealed connections between the phagophore/autophagosome membrane and the closely located ER cisternae, especially with the ER located inside the autophagosome. The connections were typically formed by narrow extensions from the phagophore/autophagosome to the ER. This finding has potential implications on the origin of autophagosome membranes, and on the mechanism of phagophore membrane extension. In addition, we observed lipid droplets in very close contact with the phagophores/autophagosomes.
                Bookmark

                Author and article information

                Journal
                Biochem Soc Trans
                Biochem. Soc. Trans
                ppbiost
                BST
                Biochemical Society Transactions
                Portland Press Ltd.
                0300-5127
                1470-8752
                15 December 2017
                17 November 2017
                : 45
                : 6
                : 1323-1331
                Affiliations
                Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
                Author notes
                Correspondence: Takeshi Noda ( takenoda@ 123456dent.osaka-u.ac.jp )
                Article
                BST-45-1323
                10.1042/BST20170128
                5730941
                29150528
                ec4f9841-9a76-4db6-82f7-b38f31924b1f
                © 2017 The Author(s)

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND).

                History
                : 22 July 2017
                : 11 October 2017
                : 16 October 2017
                Categories
                Review Articles
                Review Article
                27
                24
                23

                Biochemistry
                autophagy,endoplasmic reticulum,trafficking
                Biochemistry
                autophagy, endoplasmic reticulum, trafficking

                Comments

                Comment on this article