12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Taurine Treatment Modulates Circadian Rhythms in Mice Fed A High Fat Diet

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Close ties have been made among certain nutrients, obesity, type 2 diabetes and circadian clocks. Among nutrients, taurine has been documented as being effective against obesity and type 2 diabetes. However, the impact of taurine on circadian clocks has not been elucidated. We investigated whether taurine can modulate or correct disturbances in daily rhythms caused by a high-fat diet in mice. Male C57BL/6 mice were divided in four groups: control (C), control + taurine (C+T), high-fat diet (HFD) and HFD + taurine (HFD+T). They were administered 2% taurine in their drinking water for 10 weeks. Mice were euthanized at 6:00, 12:00, 18:00, and 24:00. HFD mice increased body weight, visceral fat and food intake, as well as higher levels of glucose, insulin and leptin, throughout the 24 h. Taurine prevented increments in food intake, body weight and visceral fat, improved glucose tolerance and insulin sensitivity and reduced disturbances in the 24 h patterns of plasma insulin and leptin. HFD downregulated the expression of clock genes Rev-erbα, Bmal1, and Per1 in pancreatic islets. Taurine normalized the gene and protein expression of PER1 in beta-cells, which suggests that it could be beneficial for the correction of daily rhythms and the amelioration of obesity and diabetes.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Disruption of the Clock Components CLOCK and BMAL1 Leads to Hypoinsulinemia and Diabetes

          The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night1–3. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and while rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes4, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism, and insulin signaling is delayed in circadian mutant mice, and both Clock 5,6 and Bmal1 7 mutants exhibit impaired glucose tolerance, reduced insulin secretion, and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival, and synaptic vesicle assembly. Remarkably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective β-cell function at the very latest stage of stimulus-secretion coupling. These results demonstrate a role for the β-cell clock in coordinating insulin secretion with the sleep-wake cycle, and reveal that ablation of the pancreatic clock can trigger onset of diabetes mellitus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian circadian biology: elucidating genome-wide levels of temporal organization.

            During the past decade, the molecular mechanisms underlying the mammalian circadian clock have been defined. A core set of circadian clock genes common to most cells throughout the body code for proteins that feed back to regulate not only their own expression, but also that of clock output genes and pathways throughout the genome. The circadian system represents a complex multioscillatory temporal network in which an ensemble of coupled neurons comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus is entrained to the daily light/dark cycle and subsequently transmits synchronizing signals to local circadian oscillators in peripheral tissues. Only recently has the importance of this system to the regulation of such fundamental biological processes as the cell cycle and metabolism become apparent. A convergence of data from microarray studies, quantitative trait locus analysis, and mutagenesis screens demonstrates the pervasiveness of circadian regulation in biological systems. The importance of maintaining the internal temporal homeostasis conferred by the circadian system is revealed by animal models in which mutations in genes coding for core components of the clock result in disease, including cancer and disturbances to the sleep/wake cycle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors.

              Clock:BMAL1 and NPAS2:BMAL1 are heterodimeric transcription factors that control gene expression as a function of the light-dark cycle. Although built to fluctuate at or near a 24-hour cycle, the clock can be entrained by light, activity, or food. Here we show that the DNA-binding activity of the Clock:BMAL1 and NPAS2:BMAL1 heterodimers is regulated by the redox state of nicotinamide adenine dinucleotide (NAD) cofactors in a purified system. The reduced forms of the redox cofactors, NAD(H) and NADP(H), strongly enhance DNA binding of the Clock:BMAL1 and NPAS2:BMAL1 heterodimers, whereas the oxidized forms inhibit. These observations raise the possibility that food, neuronal activity, or both may entrain the circadian clock by direct modulation of cellular redox state.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                18 November 2016
                2016
                : 6
                : 36801
                Affiliations
                [1 ]Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain
                [2 ]CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Spain
                [3 ]Postgraduate Program on Physical Education, Universidade Católica de Brasília-UCB , DF, Brazil
                [4 ]University of Barcelona, Faculty of Medicine, University of Barcelona , Barcelona, Spain.
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep36801
                10.1038/srep36801
                5114685
                27857215
                5031ac70-f8d1-43f0-ae0c-1022786da708
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 15 March 2016
                : 18 October 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article