5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Schimke immunoosseous dysplasia: an ultra-rare disease. a 20-year case series from the tertiary hospital in the Czech Republic

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Schimke immunoosseous dysplasia (SIOD) is an ultra-rare inherited disease affecting many organ systems. Spondyloepiphyseal dysplasia, T-cell immunodeficiency and steroid resistant nephrotic syndrome are the main symptoms of this disease.

          Case presentation

          We aimed to characterize the clinical, pathological and genetic features of SIOD patients received at tertiary Pediatric Nephrology Center, University Hospital Motol, Prague, Czech Republic during the period 2001–2021. The mean age at diagnosis was 21 months (range 18–48 months). All patients presented with growth failure, nephropathy and immunodeficiency. Infections and neurologic complications were present in most of the affected children during the course of the disease.

          Conclusions

          Although SIOD is a disease characterized by specific features, the individual phenotype may differ. Neurologic signs can severely affect the quality of life; the view on the management of SIOD is not uniform. Currently, new therapeutic methods are required.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

          The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies

            The Human Gene Mutation Database (HGMD®) constitutes a comprehensive collection of published germline mutations in nuclear genes that underlie, or are closely associated with human inherited disease. At the time of writing (March 2017), the database contained in excess of 203,000 different gene lesions identified in over 8000 genes manually curated from over 2600 journals. With new mutation entries currently accumulating at a rate exceeding 17,000 per annum, HGMD represents de facto the central unified gene/disease-oriented repository of heritable mutations causing human genetic disease used worldwide by researchers, clinicians, diagnostic laboratories and genetic counsellors, and is an essential tool for the annotation of next-generation sequencing data. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions and non-profit organisations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via QIAGEN Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nosology and classification of genetic skeletal disorders: 2019 revision

                Bookmark

                Author and article information

                Contributors
                Journal
                Italian Journal of Pediatrics
                Ital J Pediatr
                Springer Science and Business Media LLC
                1824-7288
                December 2023
                January 19 2023
                : 49
                : 1
                Article
                10.1186/s13052-023-01413-y
                7b5b5b27-feb5-428f-87a2-b2199ee3a14b
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article