18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Big data in basic and translational cancer research

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Historically, the primary focus of cancer research has been molecular and clinical studies of a few essential pathways and genes. Recent years have seen the rapid accumulation of large-scale cancer omics data catalysed by breakthroughs in high-throughput technologies. This fast data growth has given rise to an evolving concept of ‘big data’ in cancer, whose analysis demands large computational resources and can potentially bring novel insights into essential questions. Indeed, the combination of big data, bioinformatics and artificial intelligence has led to notable advances in our basic understanding of cancer biology and to translational advancements. Further advances will require a concerted effort among data scientists, clinicians, biologists and policymakers. Here, we review the current state of the art and future challenges for harnessing big data to advance cancer research and treatment.

          Related collections

          Most cited references181

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comprehensive Integration of Single-Cell Data

            Single-cell transcriptomics has transformed our ability to characterize cell states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets to better understand cellular identity and function. Here, we develop a strategy to "anchor" diverse datasets together, enabling us to integrate single-cell measurements not only across scRNA-seq technologies, but also across different modalities. After demonstrating improvement over existing methods for integrating scRNA-seq data, we anchor scRNA-seq experiments with scATAC-seq to explore chromatin differences in closely related interneuron subsets and project protein expression measurements onto a bone marrow atlas to characterize lymphocyte populations. Lastly, we harmonize in situ gene expression and scRNA-seq datasets, allowing transcriptome-wide imputation of spatial gene expression patterns. Our work presents a strategy for the assembly of harmonized references and transfer of information across datasets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Robust enumeration of cell subsets from tissue expression profiles

              We introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles. When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen, and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content, and closely related cell types. CIBERSORT should enable large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets (http://cibersort.stanford.edu).
                Bookmark

                Author and article information

                Contributors
                Journal
                Nature Reviews Cancer
                Nat Rev Cancer
                Springer Science and Business Media LLC
                1474-175X
                1474-1768
                September 05 2022
                Article
                10.1038/s41568-022-00502-0
                74a45863-66db-4e9b-930d-988f2867c2f8
                © 2022

                Free to read

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article