4
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Formulation for the Targeted Delivery of a Vaccine Strain of Oncolytic Measles Virus (OMV) in Hyaluronic Acid Coated Thiolated Chitosan as a Green Nanoformulation for the Treatment of Prostate Cancer: A Viro-Immunotherapeutic Approach

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Oncolytic viruses are reported as dynamite against cancer treatment nowadays.

          Methodology

          In the present work, a live attenuated oral measles vaccine (OMV) strain was used to formulate a polymeric surface-functionalized ligand-based nanoformulation (NF). OMV (half dose: not less than 500 TCID units; 0.25 mL) was encapsulated in thiolated chitosan and outermost coating with hyaluronic acid by ionic gelation method characterizing parameters was performed.

          Results and Discussion

          CD44 high expression was confirmed in prostatic adenocarcinoma (PRAD) by GEPIA which extracted data of normal and cancer tissue from GTEx and TCGA. Bioinformatics tools confirmed the viral hemagglutinin capsid protein interaction with human Caspase-I, NLRP3, and TNF-α and viral fusion protein interaction with COX-II and Caspase-I after successful delivery of MV encapsulated in NFs due to high affinity of hyaluronic acid with CD44 on the surface of prostate cancer cells. Particle size = 275.6 mm, PDI = 0.372, and ±11.5 zeta potential were shown by zeta analysis, while the thiolated group in NFs was confirmed by FTIR and Raman analysis. SEM and XRD showed a spherical smooth surface and crystalline nature, respectively, while TEM confirmed virus encapsulation within nanoparticles, which makes it very useful in targeted virus delivery systems. The virus was released from NFs in a sustained but continuous release pattern till 48 h. The encapsulated virus titer was calculated as 2.34×107 TCID50/mL units, which showed syncytia formation on post-day infection 7. Multiplicities of infection 0.1, 0.5, 1, 3, 5, 10, 15, and 20 of HA-coated OMV-loaded NFs as compared to MV vaccine on PC3 was inoculated with IC50 of 5.1 and 3.52, respectively, and growth inhibition was seen after 72 h via MTT assay which showed apoptotic cancer cell death.

          Conclusion

          Active targeted, efficacious, and sustained delivery of formulated oncolytic MV is a potent moiety in cancer treatment at lower doses with safe potential for normal prostate cells.

          Graphical Abstract

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria

          Summary Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of IL-1β and IL-18. While wild type Salmonella typhimurium infection is lethal to mice, a strain that persistently expresses flagellin was cleared by the cytosolic flagellin detection pathway via NLRC4 activation of caspase-1; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1 induced pyroptotic cell death, released bacteria from macrophages and exposed them to uptake and killing by reactive oxygen species in neutrophils. Similarly, caspase-1 cleared unmanipulated Legionella and Burkholderia by cytokine-independent mechanisms. This demonstrates for the first time that caspase-1 clears intracellular bacteria in vivo independent of IL-1β and IL-18, and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cancer nanomedicine: a review of recent success in drug delivery

            Cancer continues to be one of the most difficult global healthcare problems. Although there is a large library of drugs that can be used in cancer treatment, the problem is selectively killing all the cancer cells while reducing collateral toxicity to healthy cells. There are several biological barriers to effective drug delivery in cancer such as renal, hepatic, or immune clearance. Nanoparticles loaded with drugs can be designed to overcome these biological barriers to improve efficacy while reducing morbidity. Nanomedicine has ushered in a new era for drug delivery by improving the therapeutic indices of the active pharmaceutical ingredients engineered within nanoparticles. First generation nanomedicines have received widespread clinical approval over the past two decades, from Doxil® (liposomal doxorubicin) in 1995 to Onivyde® (liposomal irinotecan) in 2015. This review highlights the biological barriers to effective drug delivery in cancer, emphasizing the need for nanoparticles for improving therapeutic outcomes. A summary of different nanoparticles used for drug delivery applications in cancer are presented. The review summarizes recent successes in cancer nanomedicine in the clinic. The clinical trials of Onivyde leading to its approval in 2015 by the Food and Drug Adminstration are highlighted as a case study in the recent clinical success of nanomedicine against cancer. Next generation nanomedicines need to be better targeted to specifically destroy cancerous tissue, but face several obstacles in their clinical development, including identification of appropriate biomarkers to target, scale-up of synthesis, and reproducible characterization. These hurdles need to be overcome through multidisciplinary collaborations across academia, pharmaceutical industry, and regulatory agencies in order to achieve the goal of eradicating cancer. This review discusses the current use of clinically approved nanomedicines, the investigation of nanomedicines in clinical trials, and the challenges that may hinder development of the nanomedicines for cancer treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Performance and Its Limits in Rigid Body Protein-Protein Docking.

              The development of fast Fourier transform (FFT) algorithms enabled the sampling of billions of complex conformations and thus revolutionized protein-protein docking. FFT-based methods are now widely available and have been used in hundreds of thousands of docking calculations. Although the methods perform "soft" docking, which allows for some overlap of component proteins, the rigid body assumption clearly introduces limitations on accuracy and reliability. In addition, the method can work only with energy expressions represented by sums of correlation functions. In this paper we use a well-established protein-protein docking benchmark set to evaluate the results of these limitations by focusing on the performance of the docking server ClusPro, which implements one of the best rigid body methods. Furthermore, we explore the theoretical limits of accuracy when using established energy terms for scoring, provide comparison with flexible docking algorithms, and review the historical performance of servers in the CAPRI docking experiment.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                09 January 2023
                2023
                : 18
                : 185-205
                Affiliations
                [1 ]Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology , Islamabad, Pakistan
                [2 ]Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University , Islamabad, Pakistan
                [3 ]Healthcare Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology , Islamabad, Pakistan
                [4 ]Department of Biology, University of Hail , Hail, Saudia Arabia
                Author notes
                Correspondence: Faiza Naseer; Tahir Ahmad, Email faiza.naseer@ymail.com; tahir@asab.nust.edu.pk
                Author information
                http://orcid.org/0000-0002-4146-3146
                Article
                386560
                10.2147/IJN.S386560
                9838128
                36643861
                c2f47ca4-bf09-4970-86bb-0aec08429547
                © 2023 Naseer et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 06 September 2022
                : 25 October 2022
                Page count
                Figures: 15, Tables: 5, References: 40, Pages: 21
                Categories
                Original Research

                Molecular medicine
                green synthesis,controlled release,immunotherapeutic agent,in vitro studies,oncolytic activity,oncolytic measles virus,prostate cancer,targeted virus/drug delivery system,thiolated chitosan,tumour targeting,vaccine-based nanoformulation

                Comments

                Comment on this article