64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Humans are potentially exposed to microplastics through food, drink, and air. The first two pathways have received quite some scientific attention, while little is known about the latter. We address the exposure of humans to indoor airborne microplastics using a Breathing Thermal Manikin. Three apartments were investigated, and samples analysed through FPA-µFTIR-Imaging spectroscopy followed by automatic analyses down to 11 µm particle size. All samples were contaminated with microplastics, with concentrations between 1.7 and 16.2 particles m−3. Synthetic fragments and fibres accounted, on average, for 4% of the total identified particles, while nonsynthetic particles of protein and cellulose constituted 91% and 4%, respectively. Polyester was the predominant synthetic polymer in all samples (81%), followed by polyethylene (5%), and nylon (3%). Microplastics were typically of smaller size than nonsynthetic particles. As the identified microplastics can be inhaled, these results highlight the potential direct human exposure to microplastic contamination via indoor air.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Accumulation of microplastic on shorelines woldwide: sources and sinks.

          Plastic debris 1900 fibers per wash. This suggests that a large proportion of microplastic fibers found in the marine environment may be derived from sewage as a consequence of washing of clothes. As the human population grows and people use more synthetic textiles, contamination of habitats and animals by microplastic is likely to increase.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Microplastic contamination in an urban area: a case study in Greater Paris

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Airborne microplastics: Consequences to human health?

              Microplastics have recently been detected in atmospheric fallout in Greater Paris. Due to their small size, they can be inhaled and may induce lesions in the respiratory system dependent on individual susceptibility and particle properties. Even though airborne microplastics are a new topic, several observational studies have reported the inhalation of plastic fibers and particles, especially in exposed workers, often coursing with dyspnea caused by airway and interstitial inflammatory responses. Even though environmental concentrations are low, susceptible individuals may be at risk of developing similar lesions. To better understand airborne microplastics risk to human health, this work summarizes current knowledge with the intention of developing awareness and future research in this area.
                Bookmark

                Author and article information

                Contributors
                Journal
                Scientific Reports
                Sci Rep
                Springer Science and Business Media LLC
                2045-2322
                December 2019
                June 17 2019
                December 2019
                : 9
                : 1
                Article
                10.1038/s41598-019-45054-w
                37923a3b-526f-4c39-90b1-9b0b1f601960
                © 2019

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article