26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Highs and lows of hyperoxia: physiological, performance, and clinical aspects

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references258

          • Record: found
          • Abstract: found
          • Article: found

          Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society.

          This guideline is an official statement of the American College of Physicians (ACP), American College of Chest Physicians (ACCP), American Thoracic Society (ATS), and European Respiratory Society (ERS). It represents an update of the 2007 ACP clinical practice guideline on diagnosis and management of stable chronic obstructive pulmonary disease (COPD) and is intended for clinicians who manage patients with COPD. This guideline addresses the value of history and physical examination for predicting airflow obstruction; the value of spirometry for screening or diagnosis of COPD; and COPD management strategies, specifically evaluation of various inhaled therapies (anticholinergics, long-acting β-agonists, and corticosteroids), pulmonary rehabilitation programs, and supplemental oxygen therapy. This guideline is based on a targeted literature update from March 2007 to December 2009 to evaluate the evidence and update the 2007 ACP clinical practice guideline on diagnosis and management of stable COPD. RECOMMENDATION 1: ACP, ACCP, ATS, and ERS recommend that spirometry should be obtained to diagnose airflow obstruction in patients with respiratory symptoms (Grade: strong recommendation, moderate-quality evidence). Spirometry should not be used to screen for airflow obstruction in individuals without respiratory symptoms (Grade: strong recommendation, moderate-quality evidence). RECOMMENDATION 2: For stable COPD patients with respiratory symptoms and FEV(1) between 60% and 80% predicted, ACP, ACCP, ATS, and ERS suggest that treatment with inhaled bronchodilators may be used (Grade: weak recommendation, low-quality evidence). RECOMMENDATION 3: For stable COPD patients with respiratory symptoms and FEV(1) 50% predicted. (Grade: weak recommendation, moderate-quality evidence). RECOMMENDATION 7: ACP, ACCP, ATS, and ERS recommend that clinicians should prescribe continuous oxygen therapy in patients with COPD who have severe resting hypoxemia (Pao(2) ≤55 mm Hg or Spo(2) ≤88%) (Grade: strong recommendation, moderate-quality evidence).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality.

            Laboratory investigations suggest that exposure to hyperoxia after resuscitation from cardiac arrest may worsen anoxic brain injury; however, clinical data are lacking. To test the hypothesis that postresuscitation hyperoxia is associated with increased mortality. Multicenter cohort study using the Project IMPACT critical care database of intensive care units (ICUs) at 120 US hospitals between 2001 and 2005. Patient inclusion criteria were age older than 17 years, nontraumatic cardiac arrest, cardiopulmonary resuscitation within 24 hours prior to ICU arrival, and arterial blood gas analysis performed within 24 hours following ICU arrival. Patients were divided into 3 groups defined a priori based on PaO(2) on the first arterial blood gas values obtained in the ICU. Hyperoxia was defined as PaO(2) of 300 mm Hg or greater; hypoxia, PaO(2) of less than 60 mm Hg (or ratio of PaO(2) to fraction of inspired oxygen <300); and normoxia, not classified as hyperoxia or hypoxia. In-hospital mortality. Of 6326 patients, 1156 had hyperoxia (18%), 3999 had hypoxia (63%), and 1171 had normoxia (19%). The hyperoxia group had significantly higher in-hospital mortality (732/1156 [63%; 95% confidence interval {CI}, 60%-66%]) compared with the normoxia group (532/1171 [45%; 95% CI, 43%-48%]; proportion difference, 18% [95% CI, 14%-22%]) and the hypoxia group (2297/3999 [57%; 95% CI, 56%-59%]; proportion difference, 6% [95% CI, 3%-9%]). In a model controlling for potential confounders (eg, age, preadmission functional status, comorbid conditions, vital signs, and other physiological indices), hyperoxia exposure had an odds ratio for death of 1.8 (95% CI, 1.5-2.2). Among patients admitted to the ICU following resuscitation from cardiac arrest, arterial hyperoxia was independently associated with increased in-hospital mortality compared with either hypoxia or normoxia.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Incidence and Size of Patent Foramen Ovale During the First 10 Decades of Life: An Autopsy Study of 965 Normal Hearts

                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
                American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
                American Physiological Society
                0363-6119
                1522-1490
                July 2018
                July 2018
                : 315
                : 1
                : R1-R27
                Affiliations
                [1 ]School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
                [2 ]Centre for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
                [3 ]Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
                [4 ]Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
                [5 ]Department of Integrative Physiology, School of Medicine, University of Split, Split, Croatia
                [6 ]Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
                Article
                10.1152/ajpregu.00165.2017
                a5c4f460-d1d6-4123-a7de-6bf478d992e4
                © 2018
                History

                Comments

                Comment on this article