41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole-genome sequencing of clarithromycin resistant Helicobacter pylori characterizes unidentified variants of multidrug resistant efflux pump genes.

      Gut Pathogens
      Springer Nature America, Inc
      TolC homolog, Multidrug efflux, Helicobacter pylori, Clarithromycin, Whole-genome sequencing

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clarithromycin (CLR) is the key drug in eradication therapy of Helicobacter pylori (H. pylori) infection, and widespread use of CLR has led to an increase in primary CLR-resistant H. pylori. The known mechanism of CLR resistance has been established in A2146G and A2147G mutations in the 23S rRNA gene, but evidence of the involvement of other genetic mechanisms is lacking. Using the MiSeq platform, whole-genome sequencing of the 19 clinical strains and the reference strain ATCC26695 was performed to identify single nucleotide variants (SNVs) of multi-drug resistant efflux pump genes in the CLR-resistant phenotype.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          American College of Gastroenterology guideline on the management of Helicobacter pylori infection.

          Helicobacter pylori (H. pylori) remains a prevalent, worldwide, chronic infection. Though the prevalence of this infection appears to be decreasing in many parts of the world, H. pylori remains an important factor linked to the development of peptic ulcer disease, gastric malignanc and dyspeptic symptoms. Whether to test for H. pylori in patients with functional dyspepsia, gastroesophageal reflux disease (GERD), patients taking nonsteroidal antiinflammatory drugs, with iron deficiency anemia, or who are at greater risk of developing gastric cancer remains controversial. H. pylori can be diagnosed by endoscopic or nonendoscopic methods. A variety of factors including the need for endoscopy, pretest probability of infection, local availability, and an understanding of the performance characteristics and cost of the individual tests influences choice of evaluation in a given patient. Testing to prove eradication should be performed in patients who receive treatment of H. pylori for peptic ulcer disease, individuals with persistent dyspeptic symptoms despite the test-and-treat strategy, those with H. pylori-associated MALT lymphoma, and individuals who have undergone resection of early gastric cancer. Recent studies suggest that eradication rates achieved by first-line treatment with a proton pump inhibitor (PPI), clarithromycin, and amoxicillin have decreased to 70-85%, in part due to increasing clarithromycin resistance. Eradication rates may also be lower with 7 versus 14-day regimens. Bismuth-containing quadruple regimens for 7-14 days are another first-line treatment option. Sequential therapy for 10 days has shown promise in Europe but requires validation in North America. The most commonly used salvage regimen in patients with persistent H. pylori is bismuth quadruple therapy. Recent data suggest that a PPI, levofloxacin, and amoxicillin for 10 days is more effective and better tolerated than bismuth quadruple therapy for persistent H. pylori infection, though this needs to be validated in the United States.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transforming clinical microbiology with bacterial genome sequencing.

            Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae.

              Mycobacterium abscessus infections tend to respond poorly to macrolide-based chemotherapy, even though the organisms appear to be susceptible to clarithromycin. Circumstantial evidence suggested that at least some M. abscessus isolates might be inducibly resistant to macrolides. Thus, the purpose of this study was to investigate the macrolide phenotype of M. abscessus clinical isolates. Inducible resistance to clarithromycin (MIC > 32 microg/ml) was found for 7 of 10 clinical isolates of M. abscessus previously considered susceptible; the remaining 3 isolates were deemed to be susceptible (MIC
                Bookmark

                Author and article information

                Journal
                24995043
                4079918
                10.1186/1757-4749-6-27

                TolC homolog,Multidrug efflux,Helicobacter pylori,Clarithromycin,Whole-genome sequencing

                Comments

                Comment on this article