32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spinal cord injury (SCI) can cause severe irreversible motor dysfunction and even death. Neural stem cell (NSC) transplantation can promote functional recovery after acute SCI in experimental animals, but numerous issues, including low-transplanted cell survival rate, cell de-differentiation, and tumor formation need to be resolved before routine clinical application is feasible. Recent studies have shown that transplanted stem cells facilitate regeneration through release of paracrine factors. Small extracellular vesicles (sEVs), the smallest known membrane-bound nanovesicles, are involved in complex intercellular communication systems and are an important vehicle for paracrine delivery of therapeutic agents. However, the application of NSC-derived small extracellular vesicles (NSC-sEVs) to SCI treatment has not been reported. We demonstrate that NSC-sEVs can significantly reduce the extent of SCI, improve functional recovery, and reduce neuronal apoptosis, microglia activation, and neuroinflammation in rats. Furthermore, our study suggests that NSC-sEVs can regulate apoptosis and inflammatory processes by inducing autophagy. In brief, NSC-sEVs increased the expression of the autophagy marker proteins LC3B and beclin-1, and promoted autophagosome formation. Following NSC-sEV infusion, the SCI area was significantly reduced, and the expression levels of the proapoptotic protein Bax, the apoptosis effector cleaved caspase-3, and the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were significantly reduced, whereas the expression level of the anti-apoptotic protein Bcl-2 was upregulated. In the presence of the autophagy inhibitor 3MA, however, these inhibitory effects of NSC-sEVs on apoptosis and neuroinflammation were significantly reversed. Our results show for the first time that NSC-sEV treatment has the potential to reduce neuronal apoptosis, inhibit neuroinflammation, and promote functional recovery in SCI model rats at an early stage by promoting autophagy.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Hypothalamic stem cells control aging speed partly through exosomal miRNAs

          SUMMARY Hypothalamic control of aging was recently proposed, but the responsible mechanisms still remain unclear. Here, following the observation that aging of mice started with a substantial loss of hypothalamic stem/progenitor cells that co-express Sox2 and Bmi1, we developed several mouse models with ablation of these hypothalamic cells, each of them consistently displaying an acceleration in aging-like physiological changes or shortening in lifespan. Conversely, aging retardation and lifespan extension were achieved in mid-aged mice when locally implanted with healthy hypothalamic stem/progenitor cells that were genetically engineered to survive from aging-related hypothalamic inflammatory microenvironment. Mechanistically, hypothalamic stem/progenitor cells greatly contributed to exosomal miRNAs in the cerebrospinal fluid which declined over aging, while central treatment with healthy hypothalamic stem/progenitor cells-secreted exosomes led to slowdown of aging. In conclusion, aging speed is controlled significantly by hypothalamic stem cells partially through release of exosomal miRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium.

            Under conditions of tissue injury, myocardial replication and regeneration have been reported. A growing number of investigators have implicated adult bone marrow (BM) in this process, suggesting that marrow serves as a reservoir for cardiac precursor cells. It remains unclear which BM cell(s) can contribute to myocardium, and whether they do so by transdifferentiation or cell fusion. Here, we studied the ability of c-kit-enriched BM cells, Lin- c-kit+ BM cells and c-kit+ Thy1.1(lo) Lin- Sca-1+ long-term reconstituting haematopoietic stem cells to regenerate myocardium in an infarct model. Cells were isolated from transgenic mice expressing green fluorescent protein (GFP) and injected directly into ischaemic myocardium of wild-type mice. Abundant GFP+ cells were detected in the myocardium after 10 days, but by 30 days, few cells were detectable. These GFP+ cells did not express cardiac tissue-specific markers, but rather, most of them expressed the haematopoietic marker CD45 and myeloid marker Gr-1. We also studied the role of circulating cells in the repair of ischaemic myocardium using GFP+-GFP- parabiotic mice. Again, we found no evidence of myocardial regeneration from blood-borne partner-derived cells. Our data suggest that even in the microenvironment of the injured heart, c-kit-enriched BM cells, Lin- c-kit+ BM cells and c-kit+ Thy1.1(lo) Lin- Sca-1+ long-term reconstituting haematopoietic stem cells adopt only traditional haematopoietic fates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles.

              Extracellular vesicles (EVs), membrane vesicles that are secreted by a variety of mammalian cell types, have been shown to play an important role in intercellular communication. The contents of EVs, including proteins, microRNAs, and mRNAs, vary according to the cell type that secreted them. Accordingly, researchers have demonstrated that EVs derived from various cell types play different roles in biological phenomena. Considering the ubiquitous presence of mesenchymal stem cells (MSCs) in the body, MSC-derived EVs may take part in a wide range of events. In particular, MSCs have recently attracted much attention due to the therapeutic effects of their secretory factors. MSC-derived EVs may therefore provide novel therapeutic approaches. In this review, we first summarize the wide range of functions of EVs released from different cell types, emphasizing that EVs echo the phenotype of their parent cell. Then, we describe the various therapeutic effects of MSCs and pay particular attention to the significance of their paracrine effect. We then survey recent reports on MSC-derived EVs and consider the therapeutic potential of MSC-derived EVs. Finally, we discuss remaining issues that must be addressed before realizing the practical application of MSC-derived EVs, and we provide some suggestions for enhancing their therapeutic efficiency. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                Cell Death & Disease
                Cell Death Dis
                Springer Nature
                2041-4889
                May 2019
                April 18 2019
                May 2019
                : 10
                : 5
                Article
                10.1038/s41419-019-1571-8
                cc3ad641-f79a-4f6c-b393-567915be6b0f
                © 2019

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article