10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of Alternative Management Tactics Employed for the Control of Various Cockroach Species (Order: Blattodea) in the USA

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Some cockroaches that live within and around human environments are considered pests of public health importance because they can carry and transfer human pathogenic microorganisms to food and food handling surfaces; infestations could result in cockroach allergen-induced allergic sensitization and asthma in sensitized individuals. In addition, cockroaches can cause psychological stress and stigma in people living in infested locations. Historically, cockroach control has been based on the use of insecticide sprays. However, in certain situations, sole dependence on insecticides for cockroach control can lead to issues such as pesticide resistance evolution and raises public concern due to the impact on the environment and human health. To overcome these problems, the use of reduced risk insecticide options (e.g., baits) and their combined use with alternative tactics is recommended. This review aims to examine alternative tactics used for cockroach control, with emphasis on those that are proven to be efficacious, and/or have potential for their incorporation in management programs of important domestic and peridomestic cockroaches in the USA. Remarkable examples of successful cockroach control programs are those that educate the public, promote cleanliness and hygiene, use traps to monitor infestation levels and utilize insecticide baits.

          Abstract

          Effective control of domestic and peridomestic cockroaches requires integrated approaches that emphasize concurrent use of chemicals with alternative control tactics. An integrated pest management (IPM) approach is particularly justified in environments where satisfactory cockroach control cannot be achieved due to multiple factors including development of insecticide aversion and resistance in some cockroach species, and poor sanitation or structural issues that foster infestations. While a flurry of research effort has been devoted to study alternative tactics for cockroach control, only a few of them have been evaluated in the context of IPM programs. This review focuses on examining studies on alternative tactics that are proven efficacious, economical, and logistically feasible for their inclusion in IPM programs for important domestic and peridomestic cockroaches in the USA. Management programs that educate the public on cockroach biology, behavior, and the importance of sanitation; use of traps to monitor infestation levels; apply targeted low impact insecticides such as baits, have demonstrated a greater success for effective and sustainable control of cockroaches when compared to an insecticide-only approach. Incorporation of other alternative control methods to IPM programs will require more applied research that validates their use in real-world scenarios and demonstrates their cost-effectiveness.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: not found

          Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.

          Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene. Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts. RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression. Here we investigate the requirements for structure and delivery of the interfering RNA. To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually. After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference. The effects of this interference were evident in both the injected animals and their progeny. Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of coleopteran insect pests through RNA interference.

            Commercial biotechnology solutions for controlling lepidopteran and coleopteran insect pests on crops depend on the expression of Bacillus thuringiensis insecticidal proteins, most of which permeabilize the membranes of gut epithelial cells of susceptible insects. However, insect control strategies involving a different mode of action would be valuable for managing the emergence of insect resistance. Toward this end, we demonstrate that ingestion of double-stranded (ds)RNAs supplied in an artificial diet triggers RNA interference in several coleopteran species, most notably the western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte. This may result in larval stunting and mortality. Transgenic corn plants engineered to express WCR dsRNAs show a significant reduction in WCR feeding damage in a growth chamber assay, suggesting that the RNAi pathway can be exploited to control insect pests via in planta expression of a dsRNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol.

              We identify a cytochrome P450 gene (CYP6AE14) from cotton bollworm (Helicoverpa armigera), which permits this herbivore to tolerate otherwise inhibitory concentrations of the cotton metabolite, gossypol. CYP6AE14 is highly expressed in the midgut and its expression correlates with larval growth when gossypol is included in the diet. When larvae are fed plant material expressing double-stranded RNA (dsRNA) specific to CYP6AE14, levels of this transcript in the midgut decrease and larval growth is retarded. Both effects are more dramatic in the presence of gossypol. As a glutathione-S-transferase gene (GST1) is silenced in GST1 dsRNA-expressing plants, feeding insects plant material expressing dsRNA may be a general strategy to trigger RNA interference and could find applications in entomological research and field control of insect pests.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Insects
                Insects
                insects
                Insects
                MDPI
                2075-4450
                12 June 2021
                June 2021
                : 12
                : 6
                : 550
                Affiliations
                [1 ]Center for Urban and Industrial Pest Management, Department of Entomology, Purdue University, West Lafayette, IN 47907, USA; thoma761@ 123456purdue.edu
                [2 ]Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
                [3 ]Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA
                Author notes
                Author information
                https://orcid.org/0000-0003-4002-0914
                https://orcid.org/0000-0002-6858-1900
                https://orcid.org/0000-0002-6420-7153
                Article
                insects-12-00550
                10.3390/insects12060550
                8231608
                5b3daa95-574d-4b03-8886-32bf71210a70
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 13 May 2021
                : 08 June 2021
                Categories
                Review

                domestic cockroach,peridomestic cockroach,ipm,sanitation,trapping,insecticidal baits

                Comments

                Comment on this article