32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Reasonable Diet Promotes Balance of Intestinal Microbiota: Prevention of Precolorectal Cancer

      1 , 1
      BioMed Research International
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colorectal cancer (CRC) is a multifactorial disease and the second leading cause of cancer death worldwide. The pathogenesis of colorectal cancer includes genetics, age, chronic inflammation, and lifestyle. Increasing attention has recently been paid to dietary factors. Evidence from epidemiological studies and clinical research suggests that high-fibre diets can significantly reduce the incidence of CRC, whilst the consumption of high-fat diets, high-protein diets, red meat, and processed meat is high-risk factors for tumorigenesis. Fibre is a regulator of intestinal microflora and metabolism and is thus a key dietary component for maintaining intestinal health. Intestinal microbes are closely linked to CRC, with the growth of certain microbiota (such as Fusobacterium nucleatum, Escherichia coli, or Bacteroides fragilis) favouring carcinogenesis, whilst the dominant microbiota population of the intestine, such as Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria, have multiple mechanisms of antitumour activity. Various dietary components have direct effects on the types of intestinal microflora: in the Western diet mode (high-fat, high-protein, and red meat), the proportion of conditional pathogens in the intestinal flora increases, the proportion of commensal bacteria decreases, and the occurrence of colorectal cancer is promoted. Conversely, a high-fibre diet can increase the abundance of Firmicutes and reduce the abundance of Bacteroides and consequently increase the concentration of short-chain fatty acids (SCFAs) in the intestine, inhibiting the development of CRC. This article reviews the study of the relationship between diet, intestinal microbes, and the promotion or inhibition of CRC and analyses the relevant molecular mechanisms to provide ideas for the prevention and treatment of CRC.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon.

          The microbiome is being characterized by large-scale sequencing efforts, yet it is not known whether it regulates host metabolism in a general versus tissue-specific manner or which bacterial metabolites are important. Here, we demonstrate that microbiota have a strong effect on energy homeostasis in the colon compared to other tissues. This tissue specificity is due to colonocytes utilizing bacterially produced butyrate as their primary energy source. Colonocytes from germfree mice are in an energy-deprived state and exhibit decreased expression of enzymes that catalyze key steps in intermediary metabolism including the TCA cycle. Consequently, there is a marked decrease in NADH/NAD(+), oxidative phosphorylation, and ATP levels, which results in AMPK activation, p27(kip1) phosphorylation, and autophagy. When butyrate is added to germfree colonocytes, it rescues their deficit in mitochondrial respiration and prevents them from undergoing autophagy. The mechanism is due to butyrate acting as an energy source rather than as an HDAC inhibitor. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How glycan metabolism shapes the human gut microbiota.

            Symbiotic microorganisms that reside in the human intestine are adept at foraging glycans and polysaccharides, including those in dietary plants (starch, hemicellulose and pectin), animal-derived cartilage and tissue (glycosaminoglycans and N-linked glycans), and host mucus (O-linked glycans). Fluctuations in the abundance of dietary and endogenous glycans, combined with the immense chemical variation among these molecules, create a dynamic and heterogeneous environment in which gut microorganisms proliferate. In this Review, we describe how glycans shape the composition of the gut microbiota over various periods of time, the mechanisms by which individual microorganisms degrade these glycans, and potential opportunities to intentionally influence this ecosystem for better health and nutrition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Colorectal Cancer Incidence Patterns in the United States, 1974-2013.

              Colorectal cancer (CRC) incidence in the United States is declining rapidly overall but, curiously, is increasing among young adults. Age-specific and birth cohort patterns can provide etiologic clues, but have not been recently examined.
                Bookmark

                Author and article information

                Journal
                BioMed Research International
                BioMed Research International
                Hindawi Limited
                2314-6133
                2314-6141
                July 25 2019
                July 25 2019
                : 2019
                : 1-10
                Affiliations
                [1 ]Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
                Article
                10.1155/2019/3405278
                c6f3fe30-2d48-4376-a6e1-31c0e0be6b14
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article