12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A modelling approach to evaluate the long-term effect of soil texture on spring wheat productivity under a rain-fed condition

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Soil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat ( Triticum aestivum L.) from two soil textures (silt loam and clay) under rain-fed condition were analyzed. Regression analysis showed that wheat grown in silt loam soil is more sensitive to WU than wheat grown in clay soil, indicating that the wheat grown in clay soil has higher drought tolerance than that grown in silt loam. Yield variation can be explained by WU other than by precipitation use (PU). These results demonstrated that the DSSAT-CERES-Wheat model can be used to evaluate the WU of different soil textures and assess the feasibility of wheat production under various conditions. These outcomes can improve our understanding of the long-term effect of soil texture on spring wheat productivity in rain-fed condition.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems.

          N. Turner (2004)
          Yields of dryland (rainfed) wheat in Australia have increased steadily over the past century despite rainfall being unchanged, indicating that the rainfall-use efficiency has increased. Analyses suggest that at least half of the increase in rainfall-use efficiency can be attributed to improved agronomic management. Various methods of analysing the factors influencing dryland yields and rainfall-use efficiency, such as simple rules and more complex models, are presented and the agronomic factors influencing water use, water-use efficiency, and harvest index of crops are discussed. The adoption of agronomic procedures such as minimum tillage, appropriate fertilizer use, improved weed/disease/insect control, timely planting, and a range of rotation options, in conjunction with new cultivars, has the potential to increase the yields and rainfall-use efficiency of dryland crops. It is concluded that most of the agronomic options for improving rainfall-use efficiency in rainfed agricultural systems decrease water losses by soil evaporation, runoff, throughflow, deep drainage, and competing weeds, thereby making more water available for increased water use by the crop.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            How Early Can the Seeding Dates of Spring Wheat Be under Current and Future Climate in Saskatchewan, Canada?

            Background Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. Methodology/principal findings This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961–1990) and three climate change scenarios (2040–2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. Conclusions/significance The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.
              Bookmark

              Author and article information

              Journal
              Sci Rep
              Sci Rep
              Scientific Reports
              Nature Publishing Group
              2045-2322
              30 July 2014
              2014
              : 4
              : 5736
              Affiliations
              [1 ]National Research Council , Saskatoon, Saskatchewan S7N0W9, Canada
              [2 ]Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , Beijing, 100101, P.R. China
              [3 ]Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada , Swift Current, Saskatchewan S9H3X2, Canada
              [4 ]College of Resources and Environmental Sciences, China Agricultural University , Beijing, 100193, P.R. China
              Author notes
              Article
              srep05736
              10.1038/srep05736
              4115211
              25074796
              12e7694f-77a0-4254-8052-547e9fef42f4
              Copyright © 2014, Macmillan Publishers Limited. All rights reserved

              This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

              History
              : 07 February 2014
              : 24 June 2014
              Categories
              Article

              Uncategorized
              Uncategorized

              Comments

              Comment on this article