17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanism and Prevention of Titanium Particle-Induced Inflammation and Osteolysis

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The worldwide number of dental implants and orthopedic prostheses is steadily increasing. Orthopedic implant loosening, in the absence of infection, is mostly attributable to the generation of wear debris. Dental peri-implantitis is characterized by a multifactorial etiology and is the main cause of implant failure. It consists of a peri-implant inflammatory lesion that often results in loss of supporting bone. Disease management includes cleaning the surrounding flora by hand instruments, ultrasonic tips, lasers, or chemical agents. We recently published a paper indicating that US scaling of titanium (Ti) implants releases particles that provoke an inflammatory response and osteolysis. Here we show that a strong inflammatory response occurs; however, very few of the titanium particles are phagocytosed by the macrophages. We then measured a dramatic Ti particle-induced stimulation of IL1β, IL6, and TNFα secretion by these macrophages using multiplex immunoassay. The particle-induced expression profile, examined by FACS, also indicated an M1 macrophage polarization. To assess how the secreted cytokines contributed to the paracrine exacerbation of the inflammatory response and to osteoclastogenesis, we treated macrophage/preosteoclast cultures with neutralizing antibodies against IL1β, IL6, or TNFα. We found that anti-TNFα antibodies attenuated the overall expression of both the inflammatory cytokines and osteoclastogenesis. On the other hand, anti-IL1β antibodies affected osteoclastogenesis but not the paracrine expression of inflammatory cytokines, whereas anti-IL6 antibodies did the opposite. We then tested these neutralizing antibodies in vivo using our mouse calvarial model of Ti particle-induced osteolysis and microCT analysis. Here, all neutralizing antibodies, administered by intraperitoneal injection, completely abrogated the particle-induced osteolysis. This suggests that blockage of paracrine inflammatory stimulation and osteoclastogenesis are similarly effective in preventing bone resorption induced by Ti particles. Blocking both the inflammation and osteoclastogenesis by anti-TNFα antibodies, incorporated locally into a slow-release membrane, also significantly prevented osteolysis. The osteolytic inflammatory response, fueled by ultrasonic scaling of Ti implants, results from an inflammatory positive feedback loop and osteoclastogenic stimulation. Our findings suggest that blocking IL1β, IL6, and/or TNFα systemically or locally around titanium implants is a promising therapeutic approach for the clinical management of peri-implant bone loss.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          IL-10 inhibits cytokine production by activated macrophages.

          IL-10 inhibits the ability of macrophage but not B cell APC to stimulate cytokine synthesis by Th1 T cell clones. In this study we have examined the direct effects of IL-10 on both macrophage cell lines and normal peritoneal macrophages. LPS (or LPS and IFN-gamma)-induced production of IL-1, IL-6, and TNF-alpha proteins was significantly inhibited by IL-10 in two macrophage cell lines. Furthermore, IL-10 appears to be a more potent inhibitor of monokine synthesis than IL-4 when added at similar concentrations. LPS or LPS- and IFN-gamma-induced expression of IL-1 alpha, IL-6, or TNF-alpha mRNA was also inhibited by IL-10 as shown by semiquantitative polymerase chain reaction or Northern blot analysis. Inhibition of LPS-induced IL-6 secretion by IL-10 was less marked in FACS-purified peritoneal macrophages than in the macrophage cell lines. However, IL-6 production by peritoneal macrophages was enhanced by addition of anti-IL-10 antibodies, implying the presence in these cultures of endogenous IL-10, which results in an intrinsic reduction of monokine synthesis after LPS activation. Consistent with this proposal, LPS-stimulated peritoneal macrophages were shown to directly produce IL-10 detectable by ELISA. Furthermore, IFN-gamma was found to enhance IL-6 production by LPS-stimulated peritoneal macrophages, and this could be explained by its suppression of IL-10 production by this same population of cells. In addition to its effects on monokine synthesis, IL-10 also induces a significant change in morphology in IFN-gamma-stimulated peritoneal macrophages. The potent action of IL-10 on the macrophage, particularly at the level of monokine production, supports an important role for this cytokine not only in the regulation of T cell responses but also in acute inflammatory responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation.

            The immune system has evolved to protect the host from invading pathogens and to maintain tissue homeostasis. Although the inflammatory process involving pathogens is well documented, the intrinsic compounds that initiate sterile inflammation and how its progression is mediated are still not clear. Because tissue injury is usually associated with ischemia and the accompanied hypoxia, the microenvironment of various pathologies involves anaerobic metabolites and products of necrotic cells. In the current study, we assessed in a comparative manner the role of IL-1α and IL-1β in the initiation and propagation of sterile inflammation induced by products of hypoxic cells. We found that following hypoxia, the precursor form of IL-1α, and not IL-1β, is upregulated and subsequently released from dying cells. Using an inflammation-monitoring system consisting of Matrigel mixed with supernatants of hypoxic cells, we noted accumulation of IL-1α in the initial phase, which correlated with the infiltration of neutrophils, and the expression of IL-1β correlated with later migration of macrophages. In addition, we were able to show that IL-1 molecules from cells transfected with either precursor IL-1α or mature IL-1β can recruit neutrophils or macrophages, respectively. Taken together, these data suggest that IL-1α, released from dying cells, initiates sterile inflammation by inducing recruitment of neutrophils, whereas IL-1β promotes the recruitment and retention of macrophages. Overall, our data provide new insight into the biology of IL-1 molecules as well as on the regulation of sterile inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts.

              Osteoclasts are thought to belong to a macrophage lineage. However, the nature of common precursors of osteoclasts and macrophages remains to be investigated. We have characterized the differentiation potential of mouse bone marrow macrophages into mature osteoclasts. Monocyte macrophage-colony-stimulating factor (M-CSF) stimulated the proliferation of bone marrow macrophages in a dose-dependent manner and these M-CSF-dependent bone marrow macrophage (MDBM) cells efficiently differentiated into the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in the presence of soluble RANKL (sRANKL) and M-CSF in the in vitro culture. The macrophage-like cell line TMC16 was established from tsA58 (temperature-sensitive SV40 large T-antigen) transgenic mice in the same manner to the preparation of MDBM cells and also differentiated into mature osteoclasts. During this differentiation in vitro, the morphology of the cells changed from spindle to round and smaller (termed pOC) on day 2 and to multinuclear (termed multinucleated cells [MNCs]) on day 4. The surface expression of macrophage marker CD14 was down-regulated and that of CD43 was up-regulated on pOC, analyzed by flow cytometry. RNA analysis revealed that osteoclast marker genes such as calcitonin receptor (CTR), carbonic anhydrase II (CAII), cathepsin K (cath K), MMP9, and TRAP were strongly expressed in MNCs and weakly in pOC whereas MDBM cells did not express these genes. However, the osteopontin (OPN) gene was strongly expressed in MDBM cells and this expression became weakened after differentiation into pOC. The TMC16 cell line weakly expressed cath K, TRAP, and OPN, suggesting that the TMC16 cell line is immortalized at a stage slightly differentiated from MDBM cells. Furthermore, cell sorting analysis revealed that osteoclast early progenitors in bone marrow cells are preferentially present in the Mac-1- F4/80dull population, which differentiated into MDBM cells (the osteoclast progenitor) expressing Mac-1+ F4/80int, suggesting that M-CSF plays roles of a differentiation factor as well as a growth factor for osteoclast early progenitors. These results showed the transition of morphology, surface markers, and gene expression from the early to mature stage in osteoclast differentiation. We propose three differentiation stages in the osteoclast lineage: the pro-osteoclast (spindle-shaped macrophage cells), the pre-osteoclast (small round mononucleated TRAP-positive cells), and the mature osteoclast (multinucleated TRAP-positive cells) stage.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                18 December 2018
                2018
                : 9
                : 2963
                Affiliations
                [1] 1Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel
                [2] 2Department of Prosthodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel
                [3] 3Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel
                Author notes

                Edited by: Asaf Wilensky, Hadassah Medical Center, Israel

                Reviewed by: Gustavo Pompermaier Garlet, University of São Paulo, Brazil; Keith Kirkwood, University at Buffalo, United States

                *Correspondence: Yankel Gabet yankel@ 123456tau.ac.il

                This article was submitted to Mucosal Immunity, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2018.02963
                6305459
                30619321
                8cce577c-6cbd-458b-b0d1-222c1ab9055f
                Copyright © 2018 Eger, Hiram-Bab, Liron, Sterer, Carmi, Kohavi and Gabet.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 September 2018
                : 03 December 2018
                Page count
                Figures: 9, Tables: 0, Equations: 0, References: 43, Pages: 12, Words: 6643
                Funding
                Funded by: Israel Science Foundation 10.13039/501100003977
                Award ID: 1822/12
                Award ID: 1367/12
                Award ID: 1086/17
                Categories
                Immunology
                Original Research

                Immunology
                dental implants,peri-implantitis,macrophages,cytokines,osteoclasts
                Immunology
                dental implants, peri-implantitis, macrophages, cytokines, osteoclasts

                Comments

                Comment on this article