50
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Air and surface contamination in non-health care settings among 641 environmental specimens of 39 COVID-19 cases

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Little is known about the SARS-CoV-2 contamination of environmental surfaces and air in non-health care settings among COVID-19 cases. We explored the SARS-CoV-2 contamination of environmental surfaces and air by collecting air and swabbing environmental surfaces among 39 COVID-19 cases in Guangzhou, China. The specimens were tested on RT-PCR. The information collected for COVID-19 cases included basic demographic, clinical severity, symptoms at onset, radiological testing, laboratory testing and hospital admission. A total of 641 environmental surfaces and air specimens were collected among 39 COVID-19 cases before disinfection. Among them, 20 specimens (20/641, 3.1%) were tested positive from 9 COVID-19 cases (9/39, 23.1%), with 5 (5/101, 5.0%) positive specimens from 3 asymptomatic cases, 5 (5/220, 2.3%) from 3 mild cases, and 10 (10/374, 2.7%) from 3 moderate cases. All positive specimens were collected within 3 days after diagnosis, and 10 (10/42, 23.8%) were found in toilet (5 on toilet bowl, 4 on sink/faucet/shower, 1 on floor drain), 4 (4/21, 19.0%) in anteroom (2 on water dispenser/cup/bottle, 1 on chair/table, 1 on TV remote), 1 (1/8, 12.5%) in kitchen (1 on dining-table), 1 (1/18, 5.6%) in bedroom (1 on bed/sheet pillow/bedside table), 1 (1/5, 20.0%) in car (1 on steering wheel/seat/handlebar) and 3 (3/20, 21.4%) on door knobs. Air specimens in room (0/10, 0.0%) and car (0/1, 0.0%) were all negative. SARS-CoV-2 was found on environmental surfaces especially in toilet, and may survive for several days. We provided evidence of potential for SARS-CoV-2 transmission through contamination of environmental surfaces.

          Author summary

          The Coronavirus Disease 2019 (COVID-19) pandemic has precipitated a global crisis. It is important to understanding the SARS-CoV-2 contamination of environmental surfaces and air in non-health care settings among COVID-19 cases. In this study, we explored the SARS-CoV-2 contamination of environmental surfaces and air by collecting air and swabbing environmental surfaces among 39 COVID-19 cases in Guangzhou, China. We found that 20 specimens were tested positive from 9 COVID-19 cases. All positive specimens were collected within 3 days after diagnosis, and 10 were found in toilet. Air specimens in room and car were all negative. SARS-CoV-2 was found on environmental surfaces especially in toilet, and may survive for several days. We provided evidence of potential for SARS-CoV-2 transmission through contamination of environmental surfaces.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

          To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster

            Summary Background An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. Methods In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. Findings From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. Interpretation Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. Funding The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing

              The newly emergent human virus SARS-CoV-2 is resulting in high fatality rates and incapacitated health systems. Preventing further transmission is a priority. We analyzed key parameters of epidemic spread to estimate the contribution of different transmission routes and determine requirements for case isolation and contact-tracing needed to stop the epidemic. We conclude that viral spread is too fast to be contained by manual contact tracing, but could be controlled if this process was faster, more efficient and happened at scale. A contact-tracing App which builds a memory of proximity contacts and immediately notifies contacts of positive cases can achieve epidemic control if used by enough people. By targeting recommendations to only those at risk, epidemics could be contained without need for mass quarantines (‘lock-downs’) that are harmful to society. We discuss the ethical requirements for an intervention of this kind.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: Supervision
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: SoftwareRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Investigation
                Role: Methodology
                Role: Investigation
                Role: Methodology
                Role: Investigation
                Role: Methodology
                Role: Investigation
                Role: Methodology
                Role: Investigation
                Role: Conceptualization
                Role: Data curationRole: Project administrationRole: ResourcesRole: Supervision
                Role: ConceptualizationRole: Data curationRole: Funding acquisitionRole: Project administrationRole: ResourcesRole: ValidationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                9 October 2020
                October 2020
                : 14
                : 10
                : e0008570
                Affiliations
                [1 ] Guangzhou Center for Disease Control and Prevention, Guangzhou, China
                [2 ] Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
                [3 ] Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
                International Atomic Energy Agency, AUSTRIA
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-6537-6215
                Article
                PNTD-D-20-01216
                10.1371/journal.pntd.0008570
                7577473
                33035211
                b5c166bd-cb81-4fa7-91be-d353d86dadee
                © 2020 Luo et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 July 2020
                : 14 August 2020
                Page count
                Figures: 2, Tables: 3, Pages: 13
                Funding
                Funded by: Project Supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme
                Award ID: 2019
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 82041030
                Award Recipient :
                Funded by: Construction of High-level University of Guangdong
                Award ID: G619339521 and G618339167
                Award Recipient :
                Funded by: Zhejiang University special scientific research fund for COVID-19 prevention and control
                Award ID: K920330111
                Award Recipient :
                This study was sponsored by the Project Supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2019), Young Elite Scientists Sponsorship Program by CAST (2019QNRC001), the Construction of High-level University of Guangdong (G619339521 and G618339167) and the Zhejiang University special scientific research fund for COVID-19 prevention and control (K920330111). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Viral Diseases
                Covid 19
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Reverse Transcriptase-Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Reverse Transcriptase-Polymerase Chain Reaction
                Medicine and Health Sciences
                Diagnostic Medicine
                Virus Testing
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Respiratory Infections
                Medicine and Health Sciences
                Medical Conditions
                Respiratory Disorders
                Respiratory Infections
                Medicine and Health Sciences
                Pulmonology
                Respiratory Disorders
                Respiratory Infections
                Biology and Life Sciences
                Physiology
                Physiological Processes
                Coughing
                Medicine and Health Sciences
                Clinical Medicine
                Signs and Symptoms
                Coughing
                Medicine and Health Sciences
                Clinical Medicine
                Signs and Symptoms
                Fevers
                Medicine and Health Sciences
                Health Care
                Sanitization
                Disinfection
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Infectious Disease Control
                Sanitization
                Disinfection
                Medicine and Health Sciences
                Public and Occupational Health
                Preventive Medicine
                Sanitization
                Disinfection
                Custom metadata
                vor-update-to-uncorrected-proof
                2020-10-21
                Readers interested in obtaining survey data for this study are available from CM at maochen9@ 123456smu.edu.cn .
                COVID-19

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article