10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      gp120 Induces Cell Death in Human Neuroblastoma Cells Through the CXCR4 and CCR5 Chemokine Receptors

      Journal of Neurochemistry
      Wiley

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Glutamate neurotoxicity and diseases of the nervous system.

          D Choi (1988)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells.

            Evidence suggests that CD8+ T lymphocytes are involved in the control of human immunodeficiency virus (HIV) infection in vivo, either by cytolytic mechanisms or by the release of HIV-suppressive factors (HIV-SF). The chemokines RANTES, MIP-1 alpha, and MIP-1 beta were identified as the major HIV-SF produced by CD8+ T cells. Two active proteins purified from the culture supernatant of an immortalized CD8+ T cell clone revealed sequence identity with human RANTES and MIP-1 alpha. RANTES, MIP-1 alpha, and MIP-1 beta were released by both immortalized and primary CD8+ T cells. HIV-SF activity produced by these cells was completely blocked by a combination of neutralizing antibodies against RANTES, MIP-1 alpha, and MIP-1 beta. Recombinant human RANTES, MIP-1 alpha, and MIP-1 beta induced a dose-dependent inhibition of different strains of HIV-1, HIV-2, and simian immunodeficiency virus (SIV). These data may have relevance for the prevention and therapy of AIDS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry.

              Chemokines are chemotactic cytokines that activate and direct the migration of leukocytes. There are two subfamilies, the CXC and the CC chemokines. We recently found that the CXC-chemokine stromal cell-derived factor-1 (SDF-1) is a highly efficacious lymphocyte chemoattractant. Chemokines act on responsive leukocyte subsets through G-protein-coupled seven-transmembrane receptors, which are also used by distinct strains of HIV-1 as cofactors for viral entry. Laboratory-adapted and some T-cell-line-tropic (T-tropic) primary viruses use the orphan chemokine receptor LESTR/fusin (also known as fusin), whereas macrophage-tropic primary HIV-1 isolates use CCR-5 and CCR-3 (refs 7-11), which are receptors for known CC chemokines. Testing of potential receptors demonstrated that SDF-1 signalled through, and hence 'adopted', the orphan receptor LESTR, which we therefore designate CXC-chemokine receptor-4 (CXCR-4). SDF-1 induced an increase in intracellular free Ca2+ and chemotaxis in CXCR-4-transfected cells. Because SDF-1 is a biological ligand for the HIV-1 entry cofactor LESTR, we tested whether it inhibited HIV-1. SDF-1 inhibited infection by T-tropic HIV-1 of HeLa-CD4 cells, CXCR-4 transfectants, and peripheral blood mononuclear cells (PBMCs), but did not affect CCR-5-mediated infection by macrophage-tropic (M-tropic) and dual-tropic primary HIV-1.
                Bookmark

                Author and article information

                Journal
                10.1046/j.1471-4159.2000.0742373.x
                http://doi.wiley.com/10.1002/tdm_license_1.1

                Comments

                Comment on this article