110
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The mystery of membrane organization: composition, regulation and physiological relevance of lipid rafts

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large body of research has focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, wherein the preferential associations of cholesterol and saturated lipids drives the formation of relatively packed (ordered) membrane domains that selectively recruit certain lipids and proteins. Recent years have yielded new insights into this concept and its in vivo relevance, primarily owing to the development of biochemical and biophysical technologies.

          Related collections

          Most cited references197

          • Record: found
          • Abstract: found
          • Article: not found

          The Fluid Mosaic Model of the Structure of Cell Membranes

          A fluid mosaic model is presented for the gross organization and structure of the proteins and lipids of biological membranes. The model is consistent with the restrictions imposed by thermodynamics. In this model, the proteins that are integral to the membrane are a heterogeneous set of globular molecules, each arranged in an amphipathic structure, that is, with the ionic and highly polar groups protruding from the membrane into the aqueous phase, and the nonpolar groups largely buried in the hydrophobic interior of the membrane. These globular molecules are partially embedded in a matrix of phospholipid. The bulk of the phospholipid is organized as a discontinuous, fluid bilayer, although a small fraction of the lipid may interact specifically with the membrane proteins. The fluid mosaic structure is therefore formally analogous to a two-dimensional oriented solution of integral proteins (or lipoproteins) in the viscous phospholipid bilayer solvent. Recent experiments with a wide variety of techniqes and several different membrane systems are described, all of which abet consistent with, and add much detail to, the fluid mosaic model. It therefore seems appropriate to suggest possible mechanisms for various membrane functions and membrane-mediated phenomena in the light of the model. As examples, experimentally testable mechanisms are suggested for cell surface changes in malignant transformation, and for cooperative effects exhibited in the interactions of membranes with some specific ligands. Note added in proof: Since this article was written, we have obtained electron microscopic evidence (69) that the concanavalin A binding sites on the membranes of SV40 virus-transformed mouse fibroblasts (3T3 cells) are more clustered than the sites on the membranes of normal cells, as predicted by the hypothesis represented in Fig. 7B. T-here has also appeared a study by Taylor et al. (70) showing the remarkable effects produced on lymphocytes by the addition of antibodies directed to their surface immunoglobulin molecules. The antibodies induce a redistribution and pinocytosis of these surface immunoglobulins, so that within about 30 minutes at 37 degrees C the surface immunoglobulins are completely swept out of the membrane. These effects do not occur, however, if the bivalent antibodies are replaced by their univalent Fab fragments or if the antibody experiments are carried out at 0 degrees C instead of 37 degrees C. These and related results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglobulin molecules are free to diffuse in the membrane. This aggregation then appears to trigger off the pinocytosis of the membrane components by some unknown mechanism. Such membrane transformations may be of crucial importance in the induction of an antibody response to an antigen, as well as iv other processes of cell differentiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipid rafts as a membrane-organizing principle.

            Cell membranes display a tremendous complexity of lipids and proteins designed to perform the functions cells require. To coordinate these functions, the membrane is able to laterally segregate its constituents. This capability is based on dynamic liquid-liquid immiscibility and underlies the raft concept of membrane subcompartmentalization. Lipid rafts are fluctuating nanoscale assemblies of sphingolipid, cholesterol, and proteins that can be stabilized to coalesce, forming platforms that function in membrane signaling and trafficking. Here we review the evidence for how this principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to selectively focus membrane bioactivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional rafts in cell membranes.

              A new aspect of cell membrane structure is presented, based on the dynamic clustering of sphingolipids and cholesterol to form rafts that move within the fluid bilayer. It is proposed that these rafts function as platforms for the attachment of proteins when membranes are moved around inside the cell and during signal transduction.
                Bookmark

                Author and article information

                Contributors
                Journal
                100962782
                22271
                Nat Rev Mol Cell Biol
                Nat. Rev. Mol. Cell Biol.
                Nature reviews. Molecular cell biology
                1471-0072
                1471-0080
                2 May 2017
                30 March 2017
                June 2017
                01 December 2017
                : 18
                : 6
                : 361-374
                Affiliations
                MRC Human Immunology Unit, OX39DS, University of Oxford, UK
                Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, United States
                National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bellary Road, GKVK, 560065 Bangalore, India, Tel: 0091 80 2366 6260
                MRC Human Immunology Unit, OX39DS, University of Oxford, UK, Tel: 0044 1865 222167
                Article
                PMC5500228 PMC5500228 5500228 nihpa870462
                10.1038/nrm.2017.16
                5500228
                28356571
                a4576398-a949-4f4e-be76-4f6a5a9d5dbb
                History
                Categories
                Article

                Comments

                Comment on this article