17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Study on Structural Characteristics of Composite Smart Grille Based on Principal Component Analysis.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, many scholars have conducted in-depth and extensive research on the mechanical properties, preparation methods, and structural optimization of grid structural materials. In this paper, the structural characteristics of composite intelligent grid are studied by combining theoretical analysis with experiments. According to the existing conditions in the laboratory, the equilateral triangular grid structure experimental pieces were prepared. In this paper, principal component analysis combined with nearest neighbor method was used to detect the damage of composite plates. On this basis, the multiobjective robustness optimization of the structure is carried out based on artificial intelligence algorithm, which makes the structure quality and its sensitivity to uncertain parameters lower. Particle swarm optimization (PSO) is used in neural network training. The damage characteristics of different grid structures, different impact positions, and different impact energies were studied. The results show that the structural damage types, areas, and propagation characteristics are very different when the structure is impacted at different positions, which verifies that the grid structure has a good ability to limit the damage diffusion and shows that the grid structure has a good ability to resist damage.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          Intelligent energy management based on SCADA system in a real Microgrid for smart building applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Interaction behaviors and structural characteristics of zein/NaTC nanoparticles

            Bile salts are biosurfactants distributed in the human gastrointestinal tract, which can significantly influence the structure and functions of orally administrated components. This work has studied the interaction and conformation changes of zein with sodium taurocholate (NaTC) in the formation of zein/NaTC nanoparticles. When the NaTC concentration (C NaTC) increases from 0 to 0.24 g L−1, the particle size of zein/NaTC nanoparticles decreases from 97 to 76 nm, but markedly increases from 76 to 137 nm as C NaTC increases from 0.24 to 0.4 g L−1. At C NaTC = 0–0.24 g L−1, the sharply decreased zeta potential of zein/NaTC nanoparticles suggests that NaTC monomers electrostatically bind with zein molecules to form zein/NaTC complexes, which have high steric repulsion and thus aggregate into smaller zein/NaTC nanoparticles. Nevertheless, at C NaTC = 0.24–0.4 g L−1, the less changed zeta potential of zein/NaTC nanoparticles together with the surface tension result suggests that NaTC dimers formed on zein polypeptide chains due to the hydrophobic interaction cause zein/NaTC complexes to undergo more aggregation into larger zein/NaTC nanoparticles. Compared to little changes in the secondary and tertiary structures of zein molecules at C NaTC = 0–0.24 g L−1, the absorption, fluorescence, and circular dichroism measurements disclose that the addition of NaTC above 0.24 g L−1 can greatly unfold the compact structure of zein molecules with decreased α-helix content.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Intelligent Detection of a Planetary Gearbox Composite Fault Based on Adaptive Separation and Deep Learning †

              Due to the existence of multiple rotating parts in the planetary gearbox—such as the sun gear, planet gears, planet carriers, and its unique planetary motion, etc.—the vibration signals generated under multiple fault conditions are time-varying and nonstable, thus making fault diagnosis difficult. In order to solve the problem of planetary gearbox composite fault diagnosis, an improved particle swarm optimization variational mode decomposition (IPVMD) and improved convolutional neural network (I-CNN) are proposed. The method takes as input the spectrum of the original vibration signal that contains rich information. First, the automatic feature extraction of signal spectrum is performed by I-CNN, while a classifier is used to diagnose the fault modes. Second, the composite fault signal is decomposed into multiple single fault signals by adaptive variational mode, and the signal is decomposed as a model input to diagnose the single fault component. Finally, a complete intelligent diagnosis of planetary gearboxes is conducted. Through experimental verification, the composite fault diagnosis method combining IPVMD and I-CNN will diagnose the composite fault and effectively diagnose the sub-fault included in the composite fault.
                Bookmark

                Author and article information

                Journal
                Comput Intell Neurosci
                Computational intelligence and neuroscience
                Hindawi Limited
                1687-5273
                2022
                : 2022
                Affiliations
                [1 ] College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
                [2 ] School of Mechanical and Transportation Engineering of Guangxi University of Science, Guangxi, China.
                [3 ] Research Institute of Science and Technology of Chinalco, Beijing, China.
                Article
                10.1155/2022/4712041
                8754626
                35035459
                e1078ce0-d94b-4e78-b294-cbc9bb5c5b72
                History

                Comments

                Comment on this article