8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synthetic lethal approaches to target cancers with loss of PTEN function

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phosphatase and tensin homolog ( PTEN) is a tumor suppressor gene and has a role in inhibiting the oncogenic AKT signaling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP 3) into phosphatidylinositol 4,5-bisphosphate (PIP 2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumor phenotype and tumorigenesis. Identifying targeted therapies for inactive tumor suppressor genes such as PTEN has been challenging as it is difficult to restore the tumor suppressor functions. Therefore, focusing on the downstream signaling pathways to discover a targeted therapy for inactive tumor suppressor genes has highlighted the importance of synthetic lethality studies. This review focused on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.

          Related collections

          Most cited references187

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding the Warburg effect: the metabolic requirements of cell proliferation.

          In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A coding-independent function of gene and pseudogene mRNAs regulates tumour biology

            The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs possess a biological role in cancer cells that relies upon their ability to compete for microRNA binding and is independent of their protein-coding function. As a paradigm for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene (PTENP1) and the critical consequences of this interaction. We find that PTENP1 is biologically active as determined by its ability to regulate cellular levels of PTEN, and that it can exert a growth-suppressive role. We also show that PTENP1 locus is selectively lost in human cancer. We extend our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. Further, we demonstrate that the transcripts of protein coding genes such as PTEN are also biologically active. Together, these findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.

              BRCA1 and BRCA2 are important for DNA double-strand break repair by homologous recombination, and mutations in these genes predispose to breast and other cancers. Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in base excision repair, a key pathway in the repair of DNA single-strand breaks. We show here that BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis. This seems to be because the inhibition of PARP leads to the persistence of DNA lesions normally repaired by homologous recombination. These results illustrate how different pathways cooperate to repair damage, and suggest that the targeted inhibition of particular DNA repair pathways may allow the design of specific and less toxic therapies for cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                Genes Dis
                Genes Dis
                Genes & Diseases
                Chongqing Medical University
                2352-4820
                2352-3042
                01 February 2023
                November 2023
                01 February 2023
                : 10
                : 6
                : 2511-2527
                Affiliations
                [a ]Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
                [b ]Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
                Author notes
                []Corresponding author. A.Ertay@ 123456soton.ac.uk
                [∗∗ ]Corresponding author. Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK. yihua.wang@ 123456soton.ac.uk
                Article
                S2352-3042(23)00012-0
                10.1016/j.gendis.2022.12.015
                7614861
                37533462
                9228a051-9c60-4319-b226-c27dfaa984e5
                © 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 October 2022
                : 26 December 2022
                : 27 December 2022
                Categories
                Review Article

                cancer,pten,synthetic lethality,tumour suppressor gene,wdhd1

                Comments

                Comment on this article