112
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine Learning in Agriculture: A Review

      Sensors
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Machine learning has emerged with big data technologies and high-performance computing to create new opportunities for data intensive science in the multi-disciplinary agri-technologies domain. In this paper, we present a comprehensive review of research dedicated to applications of machine learning in agricultural production systems. The works analyzed were categorized in (a) crop management, including applications on yield prediction, disease detection, weed detection crop quality, and species recognition; (b) livestock management, including applications on animal welfare and livestock production; (c) water management; and (d) soil management. The filtering and classification of the presented articles demonstrate how agriculture will benefit from machine learning technologies. By applying machine learning to sensor data, farm management systems are evolving into real time artificial intelligence enabled programs that provide rich recommendations and insights for farmer decision support and action.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Neural networks and physical systems with emergent collective computational abilities.

          J Hopfield (1982)
          Computational properties of use of biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiology but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of the modeling or the failure of individual devices.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Extreme learning machine: Theory and applications

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              ANFIS: adaptive-network-based fuzzy inference system

                Bookmark

                Author and article information

                Journal
                10.3390/s18082674
                https://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article