4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multiple Rabi Splittings under Ultrastrong Vibrational Coupling

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.

          The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics for several decades and has generated the field of cavity quantum electrodynamics. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Manipulating quantum entanglement with atoms and photons in a cavity

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals

              J Hopfield (1958)
                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                October 2016
                October 6 2016
                : 117
                : 15
                Article
                10.1103/PhysRevLett.117.153601
                60716030-dc35-4d0f-9667-adc9ebcf7577
                © 2016

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article