43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved radiolabeling of DOTATOC with trivalent radiometals for clinical application by addition of ethanol

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Typically, metal-based radiopharmaceuticals are synthesized in aqueous solutions with no or low ethanol content. Labeling yields are defined by temperature, period of labeling, amount of precursor, pH etc. As recently observed, radiolabeling yields (RCY) seem to increase in the presence of non-aqueous solvents. Consequently, this effect was investigated systematically using ethanol as non-aqueous solvent (n-as), which is widely utilized in medicine, and DOTATOC as model compound.

          Methods

          To determine the impact of ethanol on the radiolabeling efficacy, “standard” labeling conditions of 68Ga-DOTATOC (95–100 °C, 10–15 min, 20–50 μg DOTATOC, aqueous solution), i.e. 10 nmol (2.9 μM, 14.2 μg), were modified in terms of lower temperature (70 °C) to achieve lower RCY (<75 %). From those lower RCY, positive effects of increasing amounts of ethanol (0–40 vol%) could directly be observed. Labeling parameters were finally evaluated in terms of shorter reaction time and lower amount of precursor. To investigate whether the effects observed are also true for other trivalent radiometals, labeling was also performed with 44Sc.

          Results

          For increasing amounts of ethanol, 68Ga-DOTATOC RCY at 70 °C improved significantly. RCY of ~95 % can be achieved within 10 min using 30 vol% ethanol compared to 46 % in the pure aqueous system. If “standard” temperatures of 95 °C are applied, high RCY of 89 % can be achieved within 5 min with much lower amounts of precursor, i.e. even at 0.93 nmol (0.3 μM, 1.3 μg). This also represents significantly increased specific activities. Similar behavior was observed for 44Sc where RCY increase successively with increasing amounts of ethanol.

          Conclusion

          There is clear experimental evidence, that adding more than 20 vol% ethanol to the reaction mixtures significantly improve labeling efficacies. This could be demonstrated for 68Ga-DOTATOC and 44Sc-DOTATOC in terms of temperature, time and concentration of required precursor. Whether this is a principal phenomenon with practical impact on the radiopharmaceutical chemistry of trivalent metals and whether this applies to other non-aqueous solvents as well - and what the physico-chemical reasons are, remains to be studied in more detail. Nevertheless, the effect observed here will improve 68Ga-DOTATOC labeling and may save at least half of the usually applied amount of precursor.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: not found
          • Article: not found

          Inorganic and bioinorganic solvent exchange mechanisms.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Processing of generator-produced 68Ga for medical application.

            The (68)Ge/(68)Ga generator provides an excellent source of positron-emitting (68)Ga. However, newly available "ionic" (68)Ge/(68)Ga radionuclide generators are not necessarily optimized for the synthesis of (68)Ga-labeled radiopharmaceuticals. The eluates have rather large volumes, a high concentration of H(+) (pH of 1), a breakthrough of (68)Ge, increasing with time or frequency of use, and impurities such as stable Zn(II) generated by the decay of (68)Ga, Ti(IV) as a constituent of the column material, and Fe(III) as a general impurity. We have developed an efficient route for the processing of generator-derived (68)Ga eluates, including the labeling and purification of biomolecules. Preconcentration and purification of the initial generator eluate are performed using a miniaturized column with organic cation-exchanger resin and hydrochloric acid/acetone eluent. The purified fraction was used for the labeling of nanomolar amounts of octreotide derivatives either in pure aqueous solution or in buffers. Using the generator post-eluate processing system, >97% of the initially eluated (68)Ga activity was obtained within 4 min as a 0.4-mL volume of a hydrochloric acid/acetone fraction. The initial amount of (68)Ge(IV) was decreased by a factor of 10(4), whereas initial amounts of Zn(II), Ti(IV), and Fe(III) were reduced by factors of 10(5), 10(2), and 10, respectively. The processed (68)Ga fraction was directly transferred to solutions containing labeling precursors-for example, DOTA-dPhe(1)-Tyr(3)-octreotide (DOTATOC) (DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid). Labeling yields of >95% were achieved within 10 min. Overall yields reached 70% at 20 min after generator elution relative to the eluted (68)Ga activity, not corrected for decay. Specific activities of (68)Ga-DOTATOC were 50 MBq/nmol using a standard protocol, reaching 450 MBq/nmol under optimized conditions. Processing on a cation-exchanger in hydrochloric acid/acetone media represents an efficient strategy for the concentration and purification of generator-derived (68)Ga(III) eluates. The developed scheme guarantees high yields and safe preparation of injectable (68)Ga-labeled radiopharmaceuticals for routine application and is easy to automate. Thus, it is being successfully used in clinical environments and might contribute to a new direction for clinical PET, which could benefit significantly from the easy and safe availability of the radionuclide generator-derived metallic positron-emitter (68)Ga.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The synthesis and chelation chemistry of DOTA-peptide conjugates.

              Metal complexes of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-peptide conjugates are increasingly used as targeted imaging and therapeutic radiopharmaceuticals and MRI contrast agents. This review covers the bifunctional derivatives of DOTA, the solution and solid-phase synthesis of DOTA-peptide conjugates, their coordination and chelation chemistry, and the biomedical applications of various DOTA-peptide conjugate metal complexes.
                Bookmark

                Author and article information

                Contributors
                +49-0228-287-16897 , elisabeth.eppard@ukb.uni-bonn.de
                +49-6131-392-5302 , froesch@uni-mainz.de
                Journal
                EJNMMI Radiopharm Chem
                EJNMMI Radiopharm Chem
                Ejnmmi Radiopharmacy and Chemistry
                Springer International Publishing (Cham )
                2365-421X
                1 April 2016
                1 April 2016
                2017
                : 1
                : 1
                : 6
                Affiliations
                [1 ]Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
                [2 ]Institute of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
                [3 ]Department of Radiopharmacy, Isotopes Center, Havana, Ave. Monumental y Carr. La Rada km 31/2, Mayabeque, La Habana Cuba
                Article
                10
                10.1186/s41181-016-0010-8
                5843808
                4464affc-7e82-4feb-857f-46ae46e01aca
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 10 December 2015
                : 16 March 2016
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                dotatoc,ethanol,radiolabeling,radiopharmaceuticals,kit
                dotatoc, ethanol, radiolabeling, radiopharmaceuticals, kit

                Comments

                Comment on this article