154
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fructose, weight gain, and the insulin resistance syndrome.

      The American Journal of Clinical Nutrition
      Animals, Dietary Carbohydrates, adverse effects, Fructose, metabolism, Humans, Hyperlipidemias, etiology, Hypertension, Metabolic Syndrome X, Weight Gain, drug effects

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review explores whether fructose consumption might be a contributing factor to the development of obesity and the accompanying metabolic abnormalities observed in the insulin resistance syndrome. The per capita disappearance data for fructose from the combined consumption of sucrose and high-fructose corn syrup have increased by 26%, from 64 g/d in 1970 to 81 g/d in 1997. Both plasma insulin and leptin act in the central nervous system in the long-term regulation of energy homeostasis. Because fructose does not stimulate insulin secretion from pancreatic beta cells, the consumption of foods and beverages containing fructose produces smaller postprandial insulin excursions than does consumption of glucose-containing carbohydrate. Because leptin production is regulated by insulin responses to meals, fructose consumption also reduces circulating leptin concentrations. The combined effects of lowered circulating leptin and insulin in individuals who consume diets that are high in dietary fructose could therefore increase the likelihood of weight gain and its associated metabolic sequelae. In addition, fructose, compared with glucose, is preferentially metabolized to lipid in the liver. Fructose consumption induces insulin resistance, impaired glucose tolerance, hyperinsulinemia, hypertriacylglycerolemia, and hypertension in animal models. The data in humans are less clear. Although there are existing data on the metabolic and endocrine effects of dietary fructose that suggest that increased consumption of fructose may be detrimental in terms of body weight and adiposity and the metabolic indexes associated with the insulin resistance syndrome, much more research is needed to fully understand the metabolic effect of dietary fructose in humans.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.

          Plasma concentrations of adiponectin, a novel adipose-specific protein with putative antiatherogenic and antiinflammatory effects, were found to be decreased in Japanese individuals with obesity, type 2 diabetes, and cardiovascular disease, conditions commonly associated with insulin resistance and hyperinsulinemia. To further characterize the relationship between adiponectinemia and adiposity, insulin sensitivity, insulinemia, and glucose tolerance, we measured plasma adiponectin concentrations, body composition (dual-energy x-ray absorptiometry), insulin sensitivity (M, hyperinsulinemic clamp), and glucose tolerance (75-g oral glucose tolerance test) in 23 Caucasians and 121 Pima Indians, a population with a high propensity for obesity and type 2 diabetes. Plasma adiponectin concentration was negatively correlated with percent body fat (r = -0.43), waist-to-thigh ratio (r = -0.46), fasting plasma insulin concentration (r = -0.63), and 2-h glucose concentration (r = -0.38), and positively correlated with M (r = 0.59) (all P < 0.001); all relations were evident in both ethnic groups. In a multivariate analysis, fasting plasma insulin concentration, M, and waist-to-thigh ratio, but not percent body fat or 2-h glucose concentration, were significant independent determinates of adiponectinemia, explaining 47% of the variance (r(2) = 0.47). Differences in adiponectinemia between Pima Indians and Caucasians (7.2 +/- 2.6 vs. 10.2 +/- 4.3 microg/ml, P < 0.0001) and between Pima Indians with normal, impaired, and diabetic glucose tolerance (7.5 +/- 2.7, 6.1 +/- 2.0, 5.5 +/- 1.6 microg/ml, P < 0.0001) remained significant after adjustment for adiposity, but not after additional adjustment for M or fasting insulin concentration. These results confirm that obesity and type 2 diabetes are associated with low plasma adiponectin concentrations in different ethnic groups and indicate that the degree of hypoadiponectinemia is more closely related to the degree of insulin resistance and hyperinsulinemia than to the degree of adiposity and glucose intolerance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Environmental contributions to the obesity epidemic.

            The current epidemic of obesity is caused largely by an environment that promotes excessive food intake and discourages physical activity. Although humans have evolved excellent physiological mechanisms to defend against body weight loss, they have only weak physiological mechanisms to defend against body weight gain when food is abundant. Control of portion size, consumption of a diet low in fat and energy density, and regular physical activity are behaviors that protect against obesity, but it is becoming difficult to adopt and maintain these behaviors in the current environment. Because obesity is difficult to treat, public health efforts need to be directed toward prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.

              The adipocyte-specific hormone leptin, the product of the obese (ob) gene, regulates adipose-tissue mass through hypothalamic effects on satiety and energy expenditure. Leptin acts through the leptin receptor, a single-transmembrane-domain receptor of the cytokine-receptor family. In rodents, homozygous mutations in genes encoding leptin or the leptin receptor cause early-onset morbid obesity, hyperphagia and reduced energy expenditure. These rodents also show hypercortisolaemia, alterations in glucose homeostasis, dyslipidaemia, and infertility due to hypogonadotropic hypogonadisms. In humans, leptin deficiency due to a mutation in the leptin gene is associated with early-onset obesity. Here we describe a homozygous mutation in the human leptin receptor gene that results in a truncated leptin receptor lacking both the transmembrane and the intracellular domains. In addition to their early-onset morbid obesity, patients homozygous for this mutation have no pubertal development and their secretion of growth hormone and thyrotropin is reduced. These results indicate that leptin is an important physiological regulator of several endocrine functions in humans.
                Bookmark

                Author and article information

                Comments

                Comment on this article