40
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Neurofilament light chain as a biomarker in neurological disorders

      , , , , ,
      Journal of Neurology, Neurosurgery & Psychiatry
      BMJ

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the management of neurological diseases, the identification and quantification of axonal damage could allow for the improvement of diagnostic accuracy and prognostic assessment. Neurofilament light chain (NfL) is a neuronal cytoplasmic protein highly expressed in large calibre myelinated axons. Its levels increase in cerebrospinal fluid (CSF) and blood proportionally to the degree of axonal damage in a variety of neurological disorders, including inflammatory, neurodegenerative, traumatic and cerebrovascular diseases. New immunoassays able to detect biomarkers at ultralow levels have allowed for the measurement of NfL in blood, thus making it possible to easily and repeatedly measure NfL for monitoring diseases’ courses. Evidence that both CSF and blood NfL may serve as diagnostic, prognostic and monitoring biomarkers in neurological diseases is progressively increasing, and NfL is one of the most promising biomarkers to be used in clinical and research setting in the next future. Here we review the most important results on CSF and blood NfL and we discuss its potential applications and future directions.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease

          Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis

            Objective Neurofilament light chains (NfL) are unique to neuronal cells, are shed to the cerebrospinal fluid (CSF), and are detectable at low concentrations in peripheral blood. Various diseases causing neuronal damage have resulted in elevated CSF concentrations. We explored the value of an ultrasensitive single‐molecule array (Simoa) serum NfL (sNfL) assay in multiple sclerosis (MS). Methods sNfL levels were measured in healthy controls (HC, n = 254) and two independent MS cohorts: (1) cross‐sectional with paired serum and CSF samples (n = 142), and (2) longitudinal with repeated serum sampling (n = 246, median follow‐up = 3.1 years, interquartile range [IQR] = 2.0–4.0). We assessed their relation to concurrent clinical, imaging, and treatment parameters and to future clinical outcomes. Results sNfL levels were higher in both MS cohorts than in HC (p < 0.001). We found a strong association between CSF NfL and sNfL (β = 0.589, p < 0.001). Patients with either brain or spinal (43.4pg/ml, IQR = 25.2–65.3) or both brain and spinal gadolinium‐enhancing lesions (62.5pg/ml, IQR = 42.7–71.4) had higher sNfL than those without (29.6pg/ml, IQR = 20.9–41.8; β = 1.461, p = 0.005 and β = 1.902, p = 0.002, respectively). sNfL was independently associated with Expanded Disability Status Scale (EDSS) assessments (β = 1.105, p < 0.001) and presence of relapses (β = 1.430, p < 0.001). sNfL levels were lower under disease‐modifying treatment (β = 0.818, p = 0.003). Patients with sNfL levels above the 80th, 90th, 95th, 97.5th, and 99th HC‐based percentiles had higher risk of relapses (97.5th percentile: incidence rate ratio = 1.94, 95% confidence interval [CI] = 1.21–3.10, p = 0.006) and EDSS worsening (97.5th percentile: OR = 2.41, 95% CI = 1.07–5.42, p = 0.034). Interpretation These results support the value of sNfL as a sensitive and clinically meaningful blood biomarker to monitor tissue damage and the effects of therapies in MS. Ann Neurol 2017;81:857–870
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease

              Question What is the importance of plasma neurofilament light in Alzheimer disease? Findings In this case-control study of 193 cognitively healthy controls, 197 patients with mild cognitive impairment, and 180 patients with Alzheimer disease dementia, plasma neurofilament light was associated with Alzheimer disease and correlated with future progression of cognitive decline, brain atrophy, and brain hypometabolism. Meaning Plasma neurofilament light may be a promising noninvasive biomarker for Alzheimer disease. Importance Existing cerebrospinal fluid (CSF) or imaging (tau positron emission tomography) biomarkers for Alzheimer disease (AD) are invasive or expensive. Biomarkers based on standard blood test results would be useful in research, drug development, and clinical practice. Plasma neurofilament light (NFL) has recently been proposed as a blood-based biomarker for neurodegeneration in dementias. Objective To test whether plasma NFL concentrations are increased in AD and associated with cognitive decline, other AD biomarkers, and imaging evidence of neurodegeneration. Design, Setting, and Participants In this prospective case-control study, an ultrasensitive assay was used to measure plasma NFL concentration in 193 cognitively healthy controls, 197 patients with mild cognitive impairment (MCI), and 180 patients with AD dementia from the Alzheimer’s Disease Neuroimaging Initiative. The study dates were September 7, 2005, to February 13, 2012. The plasma NFL analysis was performed in September 2016. Main Outcomes and Measures Associations were tested between plasma NFL and diagnosis, Aβ pathologic features, CSF biomarkers of neuronal injury, cognition, brain structure, and metabolism. Results Among 193 cognitively healthy controls, 197 patients with mild cognitive impairment, and 180 patients with AD with dementia, plasma NFL correlated with CSF NFL (Spearman ρ = 0.59, P  < .001). Plasma NFL was increased in patients with MCI (mean, 42.8 ng/L) and patients with AD dementia (mean, 51.0 ng/L) compared with controls (mean, 34.7 ng/L) ( P  < .001) and had high diagnostic accuracy for patients with AD with dementia vs controls (area under the receiver operating characteristic curve, 0.87, which is comparable to established CSF biomarkers). Plasma NFL was particularly high in patients with MCI and patients with AD dementia with Aβ pathologic features. High plasma NFL correlated with poor cognition and AD-related atrophy (at baseline and longitudinally) and with brain hypometabolism (longitudinally). Conclusions and Relevance Plasma NFL is associated with AD diagnosis and with cognitive, biochemical, and imaging hallmarks of the disease. This finding implies a potential usefulness for plasma NFL as a noninvasive biomarker in AD. This case-control study compares patients with mild cognitive impairment, patients with AD dementia, and cognitively healthy patients to test whether plasma neurofilament light concentrations are increased in patients with AD and associated with cognitive decline, other AD biomarkers, and imaging evidence of neurodegeneration.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Neurology, Neurosurgery & Psychiatry
                J Neurol Neurosurg Psychiatry
                BMJ
                0022-3050
                1468-330X
                July 11 2019
                August 2019
                August 2019
                April 09 2019
                : 90
                : 8
                : 870-881
                Article
                10.1136/jnnp-2018-320106
                f0adc7a8-15d6-4dcc-b2ba-501ea7ff10af
                © 2019
                History

                Comments

                Comment on this article