2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Role of silymarin ( Silybum marianum) in the prevention of colistin-induced acute nephrotoxicity in rats

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections.

          The emergence of multidrug-resistant gram-negative bacteria and the lack of new antibiotics to combat them have led to the revival of polymyxins, an old class of cationic, cyclic polypeptide antibiotics. Polymyxin B and polymyxin E (colistin) are the 2 polymyxins used in clinical practice. Most of the reintroduction of polymyxins during the last few years is related to colistin. The polymyxins are active against selected gram-negative bacteria, including Acinetobacter species, Pseudomonas aeruginosa, Klebsiella species, and Enterobacter species. These drugs have been used extensively worldwide for decades for local use. However, parenteral use of these drugs was abandoned approximately 20 years ago in most countries, except for treatment of patients with cystic fibrosis, because of reports of common and serious nephrotoxicity and neurotoxicity. Recent studies of patients who received intravenous polymyxins for the treatment of serious P. aeruginosa and Acinetobacter baumannii infections of various types, including pneumonia, bacteremia, and urinary tract infections, have led to the conclusion that these antibiotics have acceptable effectiveness and considerably less toxicity than was reported in old studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections.

            Increasing multidrug resistance in Gram-negative bacteria, in particular Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, presents a critical problem. Limited therapeutic options have forced infectious disease clinicians and microbiologists to reappraise the clinical application of colistin, a polymyxin antibiotic discovered more than 50 years ago. We summarise recent progress in understanding the complex chemistry, pharmacokinetics, and pharmacodynamics of colistin, the interplay between these three aspects, and their effect on the clinical use of this important antibiotic. Recent clinical findings are reviewed, focusing on evaluation of efficacy, emerging resistance, potential toxicities, and combination therapy. In the battle against rapidly emerging bacterial resistance we can no longer rely entirely on the discovery of new antibiotics; we must also pursue rational approaches to the use of older antibiotics such as colistin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria.

              Infections caused by multi-resistant Gram-negative bacteria, particularly Pseudomonas aeruginosa, are increasing worldwide. In patients with cystic fibrosis (CF), resistance in P. aeruginosa to numerous anti-pseudomonal agents is becoming common. The absence since 1995, of new substances active against resistant Gram-negative bacteria, has caused increasing concern. Colistin, an old antibiotic also known as polymyxin E, has attracted more interest recently because of its significant activity against multi-resistant P. aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae, and the low resistance rates to it. Because its use as an anti-pseudomonal agent was displaced by the potentially less toxic aminoglycosides in 1970s, our knowledge of this drug is limited. However, there has been a significant recent increase in the data gathered on colistin, focussing on its chemistry, antibacterial activity, mechanism of action and resistance, pharmacokinetics, pharmacodynamics and new clinical application. It is likely that colistin will be an important antimicrobial option against multi-resistant Gram-negative bacteria, for some years to come.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Drug and Chemical Toxicology
                Drug and Chemical Toxicology
                Informa UK Limited
                0148-0545
                1525-6014
                March 04 2022
                March 16 2020
                March 04 2022
                : 45
                : 2
                : 568-575
                Affiliations
                [1 ]Department of Nephrology, Gazi University Faculty of Medicine, Ankara, Turkey
                [2 ]Department of Medical Pharmacology, Kirikkale University Faculty of Medicine, Kirikkale, Turkey
                [3 ]Department of Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
                [4 ]Department of Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
                Article
                10.1080/01480545.2020.1733003
                34454d93-c57c-4d29-ae2a-dbb0c8648ba6
                © 2022
                History

                Comments

                Comment on this article