29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein Nutrition and Malnutrition in CKD and ESRD

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Elevated protein catabolism and protein malnutrition are common in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). The underlying etiology includes, but is not limited to, metabolic acidosis intestinal dysbiosis; systemic inflammation with activation of complements, endothelin-1 and renin-angiotensin-aldosterone (RAAS) axis; anabolic hormone resistance; energy expenditure elevation; and uremic toxin accumulation. All of these derangements can further worsen kidney function, leading to poor patient outcomes. Many of these CKD-related derangements can be prevented and substantially reversed, representing an area of great potential to improve CKD and ESRD care. This review integrates known information and recent advances in the area of protein nutrition and malnutrition in CKD and ESRD. Management recommendations are summarized. Thorough understanding the pathogenesis and etiology of protein malnutrition in CKD and ESRD patients will undoubtedly facilitate the design and development of more effective strategies to optimize protein nutrition and improve outcomes.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: found
          • Article: not found

          Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients.

          As a major component of uremic syndrome, cardiovascular disease is largely responsible for the high mortality observed in chronic kidney disease (CKD). Preclinical studies have evidenced an association between serum levels of indoxyl sulfate (IS, a protein-bound uremic toxin) and vascular alterations. The aim of this study is to investigate the association between serum IS, vascular calcification, vascular stiffness, and mortality in a cohort of CKD patients. One-hundred and thirty-nine patients (mean +/- SD age: 67 +/- 12; 60% male) at different stages of CKD (8% at stage 2, 26.5% at stage 3, 26.5% at stage 4, 7% at stage 5, and 32% at stage 5D) were enrolled. Baseline IS levels presented an inverse relationship with renal function and a direct relationship with aortic calcification and pulse wave velocity. During the follow-up period (605 +/- 217 d), 25 patients died, mostly because of cardiovascular events (n = 18). In crude survival analyses, the highest IS tertile was a powerful predictor of overall and cardiovascular mortality (P = 0.001 and 0.012, respectively). The predictive power of IS for death was maintained after adjustment for age, gender, diabetes, albumin, hemoglobin, phosphate, and aortic calcification. The study presented here indicates that IS may have a significant role in the vascular disease and higher mortality observed in CKD patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Expansion of Urease- and Uricase-Containing, Indole- and p-Cresol-Forming and Contraction of Short-Chain Fatty Acid-Producing Intestinal Microbiota in ESRD

            Background: Intestinal microbiome constitutes a symbiotic ecosystem that is essential for health, and changes in its composition/function cause various illnesses. Biochemical milieu shapes the structure and function of the microbiome. Recently, we found marked differences in the abundance of numerous bacterial taxa between ESRD and healthy individuals. Influx of urea and uric acid and dietary restriction of fruits and vegetables to prevent hyperkalemia alter ESRD patients' intestinal milieu. We hypothesized that relative abundances of bacteria possessing urease, uricase, and p-cresol- and indole-producing enzymes is increased, while abundance of bacteria containing enzymes converting dietary fiber to short-chain fatty acids (SCFA) is reduced in ESRD. Methods: Reference sets of bacteria containing genes of interest were compiled to family, and sets of intestinal bacterial families showing differential abundances between 12 healthy and 24 ESRD individuals enrolled in our original study were compiled. Overlap between sets was assessed using hypergeometric distribution tests. Results: Among 19 microbial families that were dominant in ESRD patients, 12 possessed urease, 5 possessed uricase, and 4 possessed indole and p-cresol-forming enzymes. Among 4 microbial families that were diminished in ESRD patients, 2 possessed butyrate-forming enzymes. Probabilities of these overlapping distributions were <0.05. Conclusions: ESRD patients exhibited significant expansion of bacterial families possessing urease, uricase, and indole and p-cresol forming enzymes, and contraction of families possessing butyrate-forming enzymes. Given the deleterious effects of indoxyl sulfate, p-cresol sulfate, and urea-derived ammonia, and beneficial actions of SCFA, these changes in intestinal microbial metabolism contribute to uremic toxicity and inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences.

              Protein-energy malnutrition (PEM) and inflammation are common and usually concurrent in maintenance dialysis patients. Many factors that appear to lead to these 2 conditions overlap, as do assessment tools and such criteria for detecting them as hypoalbuminemia. Both these conditions are related to poor dialysis outcome. Low appetite and a hypercatabolic state are among common features. PEM in dialysis patients has been suggested to be secondary to inflammation; however, the evidence is not conclusive, and an equicausal status or even opposite causal direction is possible. Hence, malnutrition-inflammation complex syndrome (MICS) is an appropriate term. Possible causes of MICS include comorbid illnesses, oxidative and carbonyl stress, nutrient loss through dialysis, anorexia and low nutrient intake, uremic toxins, decreased clearance of inflammatory cytokines, volume overload, and dialysis-related factors. MICS is believed to be the main cause of erythropoietin hyporesponsiveness, high rate of cardiovascular atherosclerotic disease, decreased quality of life, and increased mortality and hospitalization in dialysis patients. Because MICS leads to a low body mass index, hypocholesterolemia, hypocreatininemia, and hypohomocysteinemia, a "reverse epidemiology" of cardiovascular risks can occur in dialysis patients. Therefore, obesity, hypercholesterolemia, and increased blood levels of creatinine and homocysteine appear to be protective and paradoxically associated with a better outcome. There is no consensus about how to determine the degree of severity of MICS or how to manage it. Several diagnostic tools and treatment modalities are discussed. Successful management of MICS may ameliorate the cardiovascular epidemic and poor outcome in dialysis patients. Clinical trials focusing on MICS and its possible causes and consequences are urgently required to improve poor clinical outcome in dialysis patients.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                27 February 2017
                March 2017
                : 9
                : 3
                : 208
                Affiliations
                [1 ]Department of Nephrology, Guizhou Provincial People’s Hospital, Guizhou 550002, China; zhayan72@ 123456126.com
                [2 ]Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
                Author notes
                [* ]Correspondence: qian.qi@ 123456mayo.edu ; Tel.: +1-507-266-7960; Fax: +1-507-266-7891
                Article
                nutrients-09-00208
                10.3390/nu9030208
                5372871
                28264439
                174ba919-ce4f-4f00-8fef-26270790bacf
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 December 2016
                : 23 February 2017
                Categories
                Review

                Nutrition & Dietetics
                protein nutrition,protein catabolism,chronic kidney disease,dialysis,acidosis,inflammation,hormonal derangements,uremic toxins

                Comments

                Comment on this article