7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Impact of bioethanol impurities on steam reforming for hydrogen production: A review

      , , ,
      International Journal of Hydrogen Energy
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels.

          Global energy and environmental problems have stimulated increased efforts towards synthesizing biofuels from renewable resources. Compared to the traditional biofuel, ethanol, higher alcohols offer advantages as gasoline substitutes because of their higher energy density and lower hygroscopicity. In addition, branched-chain alcohols have higher octane numbers compared with their straight-chain counterparts. However, these alcohols cannot be synthesized economically using native organisms. Here we present a metabolic engineering approach using Escherichia coli to produce higher alcohols including isobutanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from glucose, a renewable carbon source. This strategy uses the host's highly active amino acid biosynthetic pathway and diverts its 2-keto acid intermediates for alcohol synthesis. In particular, we have achieved high-yield, high-specificity production of isobutanol from glucose. The strategy enables the exploration of biofuels beyond those naturally accumulated to high quantities in microbial fermentation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects.

            Biochemical conversion of lignocellulosic feedstocks to advanced biofuels and other commodities through a sugar-platform process involves a pretreatment step enhancing the susceptibility of the cellulose to enzymatic hydrolysis. A side effect of pretreatment is formation of lignocellulose-derived by-products that inhibit microbial and enzymatic biocatalysts. This review provides an overview of the formation of inhibitory by-products from lignocellulosic feedstocks as a consequence of using different pretreatment methods and feedstocks as well as an overview of different strategies used to alleviate problems with inhibitors. As technologies for biorefining of lignocellulose become mature and are transferred from laboratory environments to industrial contexts, the importance of management of inhibition problems is envisaged to increase as issues that become increasingly relevant will include the possibility to use recalcitrant feedstocks, obtaining high product yields and high productivity, minimizing the charges of enzymes and microorganisms, and using high solids loadings to obtain high product titers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bioconversion of lignocellulose: inhibitors and detoxification

              Bioconversion of lignocellulose by microbial fermentation is typically preceded by an acidic thermochemical pretreatment step designed to facilitate enzymatic hydrolysis of cellulose. Substances formed during the pretreatment of the lignocellulosic feedstock inhibit enzymatic hydrolysis as well as microbial fermentation steps. This review focuses on inhibitors from lignocellulosic feedstocks and how conditioning of slurries and hydrolysates can be used to alleviate inhibition problems. Novel developments in the area include chemical in-situ detoxification by using reducing agents, and methods that improve the performance of both enzymatic and microbial biocatalysts.
                Bookmark

                Author and article information

                Contributors
                Journal
                International Journal of Hydrogen Energy
                International Journal of Hydrogen Energy
                Elsevier BV
                03603199
                April 2020
                April 2020
                : 45
                : 21
                : 11923-11942
                Article
                10.1016/j.ijhydene.2020.02.159
                9f390ddc-43f6-4e84-9be3-866e61fefc32
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article