26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      HDAC inhibitors potentiate the activity of the BCR/ABL kinase inhibitor KW-2449 in imatinib-sensitive or -resistant BCR/ABL+ leukemia cells in vitro and in vivo.

      Clinical cancer research : an official journal of the American Association for Cancer Research
      Adult, Animals, Antineoplastic Combined Chemotherapy Protocols, pharmacology, therapeutic use, Benzamides, Cell Line, Tumor, Drug Resistance, Neoplasm, drug effects, Drug Synergism, Fusion Proteins, bcr-abl, antagonists & inhibitors, metabolism, Histone Deacetylase Inhibitors, administration & dosage, Humans, Indazoles, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, drug therapy, pathology, Mice, Mice, Inbred BALB C, Mice, SCID, Piperazines, Protein Kinase Inhibitors, Pyrimidines, Xenograft Model Antitumor Assays

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to determine whether histone deacetylase (HDAC) inhibitors (HDACI) such as vorinostat or entinostat (SNDX-275) could increase the lethality of the dual Bcr/Abl-Aurora kinase inhibitor KW-2449 in various Bcr/Abl(+) human leukemia cells, including those resistant to imatinib mesylate (IM). Bcr/Abl(+) chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL) cells, including those resistant to IM (T315I, E255K), were exposed to KW-2449 in the presence or absence of vorinostat or SNDX-275, after which apoptosis and effects on signaling pathways were examined. In vivo studies combining HDACIs and KW2449 were carried out by using a systemic IM-resistant ALL xenograft model. Coadministration of HDACIs synergistically increased KW-2449 lethality in vitro in multiple CML and Ph(+) ALL cell types including human IM resistant cells (e.g., BV-173/E255K and Adult/T315I). Combined treatment resulted in inactivation of Bcr/Abl and downstream targets (e.g., STAT5 and CRKL), as well as increased reactive oxygen species (ROS) generation and DNA damage (γH2A.X). The latter events and cell death were significantly attenuated by free radical scavengers (TBAP). Increased lethality was also observed in primary CD34(+) cells from patients with CML, but not in normal CD34(+) cells. Finally, minimally active vorinostat or SNDX275 doses markedly increased KW2449 antitumor effects and significantly prolonged the survival of murine xenografts bearing IM-resistant ALL cells (BV173/E255K). HDACIs increase KW-2449 lethality in Bcr/Abl(+) cells in association with inhibition of Bcr/Abl, generation of ROS, and induction of DNA damage. This strategy preferentially targets primary Bcr/Abl(+) hematopoietic cells and exhibits enhanced in vivo activity. Combining KW-2449 with HDACIs warrants attention in IM-resistant Bcr/Abl(+) leukemias. ©2011 AACR.

          Related collections

          Author and article information

          Comments

          Comment on this article