49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intensification of dairy production can increase the GHG mitigation potential of the land use sector in East Africa

      1 , 2 , 3 , 2 , 1 , 3
      Global Change Biology
      Wiley

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Sub‐Saharan Africa (SSA) could face food shortages in the future because of its growing population. Agricultural expansion causes forest degradation in SSA through livestock grazing, reducing forest carbon (C) sinks and increasing greenhouse gas (GHG) emissions. Therefore, intensification should produce more food while reducing pressure on forests. This study assessed the potential for the dairy sector in Kenya to contribute to low‐emissions development by exploring three feeding scenarios. The analyses used empirical spatially explicit data, and a simulation model to quantify milk production, agricultural emissions and forest C loss due to grazing. The scenarios explored improvements in forage quality (Fo), feed conservation (Fe) and concentrate supplementation (Co): FoCo fed high‐quality Napier grass (Pennisetum purpureum), FeCo supplemented maize silage and FoFeCo a combination of Napier, silage and concentrates. Land shortages and forest C loss due to grazing were quantified with land requirements and feed availability around forests. All scenarios increased milk yields by 44%–51%, FoCo reduced GHG emission intensity from 2.4 ± 0.1 to 1.6 ± 0.1 kg CO2eq per kg milk, FeCo reduced it to 2.2 ± 0.1, whereas FoFeCo increased it to 2.7 ± 0.2 kg CO2eq per kg milk because of land use change emissions. Closing the yield gap of maize by increasing N fertilizer use reduced emission intensities by 17% due to reduced emissions from conversion of grazing land. FoCo was the only scenario that mitigated agricultural and forest emissions by reducing emission intensity by 33% and overall emissions by 2.5% showing that intensification of dairy in a low‐income country can increase milk yields without increasing emissions. There are, however, risks of C leakage if agricultural and forest policies are not aligned leading to loss of forest to produce concentrates. This approach will aid the assessment of the climate‐smartness of livestock production practices at the national level in East Africa.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: not found
          • Article: not found

          Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Yield gap analysis with local to global relevance—A review

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Global Change Biology
                Glob Change Biol
                Wiley
                1354-1013
                1365-2486
                February 2020
                November 19 2019
                February 2020
                : 26
                : 2
                : 568-585
                Affiliations
                [1 ]Center for International Forestry Research (CIFOR) Nairobi Kenya
                [2 ]Laboratory of Geo‐Information Science and Remote Sensing Wageningen University & Research Wageningen The Netherlands
                [3 ]Lancaster Environment Centre Lancaster University Lancaster UK
                Article
                10.1111/gcb.14870
                e3be3277-e151-4a85-b312-bc3ce2add712
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article