7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent Developments and Future Prospects for Zinc‐Ion Hybrid Capacitors: a Review

      1 , 1 , 1
      Advanced Energy Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: not found
          • Article: not found

          2D metal carbides and nitrides (MXenes) for energy storage

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Materials for electrochemical capacitors.

            Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dye-sensitized solar cells.

                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Energy Materials
                Adv. Energy Mater.
                Wiley
                1614-6832
                1614-6840
                April 2021
                February 19 2021
                April 2021
                : 11
                : 14
                : 2003994
                Affiliations
                [1 ]College of Metallurgy and Material Engineering Hunan University of Technology Zhuzhou 412007 P. R. China
                Article
                10.1002/aenm.202003994
                157ded3d-4456-47db-ac80-08c22bb8184b
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article