52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FlyBase 102--advanced approaches to interrogating FlyBase.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          FlyBase (http://flybase.org) is the leading website and database of Drosophila genes and genomes. Whether you are using the fruit fly Drosophila melanogaster as an experimental system or wish to understand Drosophila biological knowledge in relation to human disease or to other model systems, FlyBase can help you successfully find the information you are looking for. Here, we demonstrate some of our more advanced searching systems and highlight some of our new tools for searching the wealth of data on FlyBase. The first section explores gene function in FlyBase, using our TermLink tool to search with Controlled Vocabulary terms and our new RNA-Seq Search tool to search gene expression. The second section of this article describes a few ways to search genomic data in FlyBase, using our BLAST server and the new implementation of GBrowse 2, as well as our new FeatureMapper tool. Finally, we move on to discuss our most powerful search tool, QueryBuilder, before describing pre-computed cuts of the data and how to query the database programmatically.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The generic genome browser: a building block for a model organism system database.

            The Generic Model Organism System Database Project (GMOD) seeks to develop reusable software components for model organism system databases. In this paper we describe the Generic Genome Browser (GBrowse), a Web-based application for displaying genomic annotations and other features. For the end user, features of the browser include the ability to scroll and zoom through arbitrary regions of a genome, to enter a region of the genome by searching for a landmark or performing a full text search of all features, and the ability to enable and disable tracks and change their relative order and appearance. The user can upload private annotations to view them in the context of the public ones, and publish those annotations to the community. For the data provider, features of the browser software include reliance on readily available open source components, simple installation, flexible configuration, and easy integration with other components of a model organism system Web site. GBrowse is freely available under an open source license. The software, its documentation, and support are available at http://www.gmod.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs

              The concept of orthology provides a foundation for formulating hypotheses on gene and genome evolution, and thus forms the cornerstone of comparative genomics, phylogenomics and metagenomics. We present the update of OrthoDB—the hierarchical catalog of orthologs (http://www.orthodb.org). From its conception, OrthoDB promoted delineation of orthologs at varying resolution by explicitly referring to the hierarchy of species radiations, now also adopted by other resources. The current release provides comprehensive coverage of animals and fungi representing 252 eukaryotic species, and is now extended to prokaryotes with the inclusion of 1115 bacteria. Functional annotations of orthologous groups are provided through mapping to InterPro, GO, OMIM and model organism phenotypes, with cross-references to major resources including UniProt, NCBI and FlyBase. Uniquely, OrthoDB provides computed evolutionary traits of orthologs, such as gene duplicability and loss profiles, divergence rates, sibling groups, and now extended with exon–intron architectures, syntenic orthologs and parent–child trees. The interactive web interface allows navigation along the species phylogenies, complex queries with various identifiers, annotation keywords and phrases, as well as with gene copy-number profiles and sequence homology searches. With the explosive growth of available data, OrthoDB also provides mapping of newly sequenced genomes and transcriptomes to the current orthologous groups.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res.
                Nucleic acids research
                Oxford University Press (OUP)
                1362-4962
                0305-1048
                Jan 2014
                : 42
                : Database issue
                Affiliations
                [1 ] The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA and Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
                Article
                gkt1092
                10.1093/nar/gkt1092
                3964969
                24234449
                6aa89add-64cd-4ffe-a42c-4224b628584c
                History

                Comments

                Comment on this article