14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased male fertility using fertility-related biomarkers

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conventional semen analyses are used to evaluate male factor fertility/infertility in humans and other animals. However, their clinical value remains controversial. Therefore, new tools that more accurately assess male fertility based on sperm function and fertilization mechanism are of interest worldwide. While protein markers in spermatozoa that might help differentiate fertile and infertile sperm have been identified, studies are in their infancy, and the markers require validation in field trials. In the present study, to discover more sensitive biomarkers in spermatozoa for predicting male fertility, we assessed protein expression in capacitated spermatozoa. The results demonstrated that cytochrome b-c1 complex subunit 2 (UQCRC2) was abundantly expressed in high-litter size spermatozoa (>3-fold). On the other hand, equatorin, beta-tubulin, cytochrome b-c1 complex subunit 1 (UQCRC1), speriolin, Ras-related protein Rab-2A (RAB2A), spermadhesin AQN-3, and seminal plasma sperm motility inhibitor were abundantly expressed in low-litter size spermatozoa (>3-fold). Moreover, RAB2A and UQCRC1 expression negatively correlated with litter size, while UQCRC2 expression positively correlated with litter size. Finally, the putative biomarkers predicted litter size in field trials. Our study suggests that biomarkers present in spermatozoa after capacitation can help differentiate superior male fertility from below-average fertility with high sensitivity.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988-1989).

          To estimate the prevalence and main causes of infertility, a multicentre survey was conducted over 1 year (July 1988-June 1989) in three regions of France. All the 1686 couples in these regions, who consulted a practitioner for primary or secondary infertility during this period, were included in the investigation. The prevalence rate of infertility was found to be 14.1%, indicating that one woman out of seven in France will consult a doctor for an infertility problem during her reproductive life. The main causes of female infertility were ovulation disorders (32%) and tubal damage (26%), and of male infertility oligo-terato-asthenozoospermia (21%), asthenozoospermia (17%), teratozoospermia (10%) and azoospermia (9%). Infertility was also found to be caused by disorders in both the male and female partners together; thus in 39% of cases both the man and woman presented with disorders. The woman alone was responsible for infertility in one-third of cases and the man alone in one-fifth. Unexplained infertility was found in 8% of the couples surveyed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Best practice policies for male infertility.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial dysfunction increases allergic airway inflammation.

              The prevalence of allergies and asthma among the world's population has been steadily increasing due to environmental factors. It has been described that exposure to ozone, diesel exhaust particles, or tobacco smoke exacerbates allergic inflammation in the lungs. These environmental oxidants increase the levels of cellular reactive oxygen species (ROS) and induce mitochondrial dysfunction in the airway epithelium. In this study, we investigated the involvement of preexisting mitochondrial dysfunction in the exacerbation of allergic airway inflammation. After cellular oxidative insult induced by ragweed pollen extract (RWE) exposure, we have identified nine oxidatively damaged mitochondrial respiratory chain-complex and associated proteins. Out of these, the ubiquinol-cytochrome c reductase core II protein (UQCRC2) was found to be implicated in mitochondrial ROS generation from respiratory complex III. Mitochondrial dysfunction induced by deficiency of UQCRC2 in airway epithelium of sensitized BALB/c mice prior the RWE challenge increased the Ag-induced accumulation of eosinophils, mucin levels in the airways, and bronchial hyperresponsiveness. Deficiency of UQCRC1, another oxidative damage-sensitive complex III protein, did not significantly alter cellular ROS levels or the intensity of RWE-induced airway inflammation. These observations suggest that preexisting mitochondrial dysfunction induced by oxidant environmental pollutants is responsible for the severe symptoms in allergic airway inflammation. These data also imply that mitochondrial defects could be risk factors and may be responsible for severe allergic disorders in atopic individuals.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                22 October 2015
                2015
                : 5
                : 15654
                Affiliations
                [1 ]Department of Animal Science & Technology, Chung-Ang University , Anseong, Gyeonggi-Do 456-756, Korea
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep15654
                10.1038/srep15654
                4614854
                26489431
                89a72ebd-decc-47dd-96cb-b11025529c96
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 16 May 2015
                : 28 September 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article