93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Skin Ageing: Natural Weapons and Strategies

      Evidence-Based Complementary and Alternative Medicine
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fact that the skin is the most visible organ makes us aware of the ageing process every minute. The use of plant extracts and herbs has its origins in ancient times. Chronological and photo-ageing can be easily distinguished clinically, but they share important molecular features. We tried to gather the most interesting evidence based on facts about plants and plant extracts used in antiaging products. Our main idea was to emphasize action mechanisms of these plant/herbal products, that is, their “strategies” in fighting skin ageing. Some of the plant extracts have the ability to scavenge free radicals, to protect the skin matrix through the inhibition of enzymatic degradation, or to promote collagen synthesis in the skin. There are some plants that can affect skin elasticity and tightness. Certainly, there is a place for herbal principles in antiaging cosmetics. On the other hand, there is a constant need for more evaluation and more clinical studies in vivo with emphasis on the ingredient concentration of the plant/herbal products, its formulation, safety, and duration of the antiaging effect.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Hormesis defined.

          Hormesis is a term used by toxicologists to refer to a biphasic dose-response to an environmental agent characterized by a low dose stimulation or beneficial effect and a high dose inhibitory or toxic effect. In the fields of biology and medicine hormesis is defined as an adaptive response of cells and organisms to a moderate (usually intermittent) stress. Examples include ischemic preconditioning, exercise, dietary energy restriction and exposures to low doses of certain phytochemicals. Recent findings have elucidated the cellular signaling pathways and molecular mechanisms that mediate hormetic responses which typically involve enzymes such as kinases and deacetylases, and transcription factors such as Nrf-2 and NF-kappaB. As a result, cells increase their production of cytoprotective and restorative proteins including growth factors, phase 2 and antioxidant enzymes, and protein chaperones. A better understanding of hormesis mechanisms at the cellular and molecular levels is leading to and to novel approaches for the prevention and treatment of many different diseases.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            In vitro antioxidant properties of rutin

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils.

              The essential oils of Ocimum basilicum L., Origanum vulgare L., and Thymus vulgaris L. were analyzed by means of gas chromatography-mass spectrometry and assayed for their antioxidant and antimicrobial activities. The antioxidant activity was evaluated as a free radical scavenging capacity (RSC), together with effects on lipid peroxidation (LP). RSC was assessed measuring the scavenging activity of the essential oils on 2,2-diphenyl-1-picrylhydrazil (DPPH(*)) and OH(*) radicals. Effects on LP were evaluated following the activities of essential oils in Fe(2+)/ascorbate and Fe(2+)/H(2)O(2) systems of induction. Essential oils exhibited very strong RSCs, reducing the DPPH radical formation (IC(50)) in the range from 0.17 (oregano) to 0.39 microg/mL (basil). The essential oil of T. vulgaris exhibited the highest OH radical scavenging activity, although none of the examined essential oils reached 50% of neutralization (IC(50)). All of the tested essential oils strongly inhibited LP, induced either by Fe(2+)/ascorbate or by Fe(2+)/H(2)O(2). The antimicrobial activity was tested against 13 bacterial strains and six fungi. The most effective antibacterial activity was expressed by the essential oil of oregano, even on multiresistant strains of Pseudomonas aeruginosa and Escherichia coli. A significant rate of antifungal activity of all of the examined essential oils was also exhibited.
                Bookmark

                Author and article information

                Journal
                10.1155/2013/827248
                http://creativecommons.org/licenses/by/3.0/

                Comments

                Comment on this article