30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Fungicide and Herbicide Chemical Exposure on Apis and Non-Apis Bees in Agricultural Landscape

      ,
      Frontiers in Environmental Science
      Frontiers Media SA

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health

          Background Recent declines in honey bees for crop pollination threaten fruit, nut, vegetable and seed production in the United States. A broad survey of pesticide residues was conducted on samples from migratory and other beekeepers across 23 states, one Canadian province and several agricultural cropping systems during the 2007–08 growing seasons. Methodology/Principal Findings We have used LC/MS-MS and GC/MS to analyze bees and hive matrices for pesticide residues utilizing a modified QuEChERS method. We have found 121 different pesticides and metabolites within 887 wax, pollen, bee and associated hive samples. Almost 60% of the 259 wax and 350 pollen samples contained at least one systemic pesticide, and over 47% had both in-hive acaricides fluvalinate and coumaphos, and chlorothalonil, a widely-used fungicide. In bee pollen were found chlorothalonil at levels up to 99 ppm and the insecticides aldicarb, carbaryl, chlorpyrifos and imidacloprid, fungicides boscalid, captan and myclobutanil, and herbicide pendimethalin at 1 ppm levels. Almost all comb and foundation wax samples (98%) were contaminated with up to 204 and 94 ppm, respectively, of fluvalinate and coumaphos, and lower amounts of amitraz degradates and chlorothalonil, with an average of 6 pesticide detections per sample and a high of 39. There were fewer pesticides found in adults and brood except for those linked with bee kills by permethrin (20 ppm) and fipronil (3.1 ppm). Conclusions/Significance The 98 pesticides and metabolites detected in mixtures up to 214 ppm in bee pollen alone represents a remarkably high level for toxicants in the brood and adult food of this primary pollinator. This represents over half of the maximum individual pesticide incidences ever reported for apiaries. While exposure to many of these neurotoxicants elicits acute and sublethal reductions in honey bee fitness, the effects of these materials in combinations and their direct association with CCD or declining bee health remains to be determined.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Glyphosate perturbs the gut microbiota of honey bees

            Significance Increased mortality of honey bee colonies has been attributed to several factors but is not fully understood. The herbicide glyphosate is expected to be innocuous to animals, including bees, because it targets an enzyme only found in plants and microorganisms. However, bees rely on a specialized gut microbiota that benefits growth and provides defense against pathogens. Most bee gut bacteria contain the enzyme targeted by glyphosate, but vary in whether they possess susceptible versions and, correspondingly, in tolerance to glyphosate. Exposing bees to glyphosate alters the bee gut community and increases susceptibility to infection by opportunistic pathogens. Understanding how glyphosate impacts bee gut symbionts and bee health will help elucidate a possible role of this chemical in colony decline.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Pollinator Diversity: Distribution, Ecological Function, and Conservation

                Bookmark

                Author and article information

                Journal
                Frontiers in Environmental Science
                Front. Environ. Sci.
                Frontiers Media SA
                2296-665X
                July 28 2020
                July 28 2020
                : 8
                Article
                10.3389/fenvs.2020.00081
                fcc4cc1b-eda6-4adf-ab09-3f2052db5f88
                © 2020

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article