215
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Summary Naive pluripotency is manifest in the preimplantation mammalian embryo. Here we determine transcriptome dynamics of mouse development from the eight-cell stage to postimplantation using lineage-specific RNA sequencing. This method combines high sensitivity and reporter-based fate assignment to acquire the full spectrum of gene expression from discrete embryonic cell types. We define expression modules indicative of developmental state and temporal regulatory patterns marking the establishment and dissolution of naive pluripotency in vivo. Analysis of embryonic stem cells and diapaused embryos reveals near-complete conservation of the core transcriptional circuitry operative in the preimplantation epiblast. Comparison to inner cell masses of marmoset primate blastocysts identifies a similar complement of pluripotency factors but use of alternative signaling pathways. Embryo culture experiments further indicate that marmoset embryos utilize WNT signaling during early lineage segregation, unlike rodents. These findings support a conserved transcription factor foundation for naive pluripotency while revealing species-specific regulatory features of lineage segregation.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.

          G Martin (1981)
          This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Naive and primed pluripotent states.

            After maternal predetermination gives way to zygotic regulation, a ground state is established within the mammalian embryo. This tabula rasa for embryogenesis is present only transiently in the preimplantation epiblast. Here, we consider how unrestricted cells are first generated and then prepared for lineage commitment. We propose that two phases of pluripotency can be defined: naive and primed. This distinction extends to pluripotent stem cells derived from embryos or by molecular reprogramming ex vivo.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Establishment in culture of pluripotential cells from mouse embryos.

                Bookmark

                Author and article information

                Journal
                Developmental Cell
                Developmental Cell
                Elsevier BV
                15345807
                November 2015
                November 2015
                : 35
                : 3
                : 366-382
                Article
                10.1016/j.devcel.2015.10.011
                7821d7a7-d975-4ce7-a881-69b6172650c5
                © 2015

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article