110
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment

      Journal of Biomedical Semantics
      Springer Nature America, Inc

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles.

          It is now clearly emerging that besides size and shape, the other primary defining element of nanoscale objects in biological media is their long-lived protein ("hard") corona. This corona may be expressed as a durable, stabilizing coating of the bare surface of nanoparticle (NP) monomers, or it may be reflected in different subpopulations of particle assemblies, each presenting a durable protein coating. Using the approach and concepts of physical chemistry, we relate studies on the composition of the protein corona at different plasma concentrations with structural data on the complexes both in situ and free from excess plasma. This enables a high degree of confidence in the meaning of the hard protein corona in a biological context. Here, we present the protein adsorption for two compositionally different NPs, namely sulfonated polystyrene and silica NPs. NP-protein complexes are characterized by differential centrifugal sedimentation, dynamic light scattering, and zeta-potential both in situ and once isolated from plasma as a function of the protein/NP surface area ratio. We then introduce a semiquantitative determination of their hard corona composition using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray liquid chromatography mass spectrometry, which allows us to follow the total binding isotherms for the particles, identifying simultaneously the nature and amount of the most relevant proteins as a function of the plasma concentration. We find that the hard corona can evolve quite significantly as one passes from protein concentrations appropriate to in vitro cell studies to those present in in vivo studies, which has deep implications for in vitro-in vivo extrapolations and will require some consideration in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment.

            Nanomaterials hold promise as multifunctional diagnostic and therapeutic agents. However, the effective application of nanomaterials is hampered by limited understanding and control over their interactions with complex biological systems. When a nanomaterial enters a physiological environment, it rapidly adsorbs proteins forming what is known as the protein 'corona'. The protein corona alters the size and interfacial composition of a nanomaterial, giving it a biological identity that is distinct from its synthetic identity. The biological identity determines the physiological response including signalling, kinetics, transport, accumulation, and toxicity. The structure and composition of the protein corona depends on the synthetic identity of the nanomaterial (size, shape, and composition), the nature of the physiological environment (blood, interstitial fluid, cell cytoplasm, etc.), and the duration of exposure. In this critical review, we discuss the formation of the protein corona, its structure and composition, and its influence on the physiological response. We also present an 'adsorbome' of 125 plasma proteins that are known to associate with nanomaterials. We further describe how the protein corona is related to the synthetic identity of a nanomaterial, and highlight efforts to control protein-nanomaterial interactions. We conclude by discussing gaps in the understanding of protein-nanomaterial interactions along with strategies to fill them (167 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Uberon, an integrative multi-species anatomy ontology

              We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at http://uberon.org
                Bookmark

                Author and article information

                Journal
                10.1186/s13326-015-0005-5

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,052

                Cited by28