There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
YKL-39 belongs to the evolutionarily conserved family of Glyco_18-containing proteins composed of chitinases and chitinase-like proteins. Chitinase-like proteins (CLPs) are secreted lectins that lack hydrolytic activity due to the amino acid substitutions in their catalytic domain and combine the functions of cytokines and growth factors. One of the major cellular sources that produce CLPs in various pathologies, including cancer, are macrophages. Monocytes recruited to the tumor site and programmed by tumor cells differentiate into tumor-associated macrophages (TAMs), which are the primary source of pro-angiogenic factors. Tumor angiogenesis is a crucial process for supplying rapidly growing tumors with essential nutrients and oxygen. We recently determined that YKL-39 is produced by tumor-associated macrophages in breast cancer. YKL-39 acts as a strong chemotactic factor for monocytes and stimulates angiogenesis. Chemotherapy is a common strategy to reduce tumor size and aggressiveness before surgical intervention, but chemoresistance, resulting in the relapse of tumors, is a common clinical problem that is critical for survival in cancer patients. Accumulating evidence indicates that TAMs are essential regulators of chemoresistance. We have recently found that elevated levels of YKL-39 expression are indicative of the efficiency of the metastatic process in patients who undergo neoadjuvant chemotherapy. We suggest YKL-39 as a new target for anti-angiogenic therapy that can be combined with neoadjuvant chemotherapy to reduce chemoresistance and inhibit metastasis in breast cancer patients.
Chronic kidney disease accelerates atherosclerosis via augmentation of inflammation, perturbation of lipid metabolism, and other mechanisms. Here, the authors describe the role of the immune system in the initiation and progression of atherosclerosis and discuss potential opportunities for therapy.
To investigate the efficacy and safety of bevacizumab plus carboplatin and paclitaxel in patients with advanced or recurrent non-small-cell lung cancer. In a phase II trial, 99 patients were randomly assigned to bevacizumab 7.5 (n = 32) or 15 mg/kg (n = 35) plus carboplatin (area under the curve = 6) and paclitaxel (200 mg/m(2)) every 3 weeks or carboplatin and paclitaxel alone (n = 32). Primary efficacy end points were time to disease progression and best confirmed response rate. On disease progression, patients in the control arm had the option to receive single-agent bevacizumab 15 mg/kg every 3 weeks. Compared with the control arm, treatment with carboplatin and paclitaxel plus bevacizumab (15 mg/kg) resulted in a higher response rate (31.5% v 18.8%), longer median time to progression (7.4 v 4.2 months) and a modest increase in survival (17.7 v 14.9 months). Of the 19 control patients that crossed over to single-agent bevacizumab, five experienced stable disease, and 1-year survival was 47%. Bleeding was the most prominent adverse event and was manifested in two distinct clinical patterns; minor mucocutaneous hemorrhage and major hemoptysis. Major hemoptysis was associated with squamous cell histology, tumor necrosis and cavitation, and disease location close to major blood vessels. Bevacizumab in combination with carboplatin and paclitaxel improved overall response and time to progression in patients with advanced or recurrent non-small-cell lung cancer. Patients with nonsquamous cell histology appear to be a subpopulation with improved outcome and acceptable safety risks.
Tumor relapse after chemotherapy-induced regression is a major clinical problem, because it often involves inoperable metastatic disease. Tumor-associated macrophages (TAM) are known to limit the cytotoxic effects of chemotherapy in preclinical models of cancer. Here, we report that an alternatively activated (M2) subpopulation of TAMs (MRC1(+)TIE2(Hi)CXCR4(Hi)) accumulate around blood vessels in tumors after chemotherapy, where they promote tumor revascularization and relapse, in part, via VEGF-A release. A similar perivascular, M2-related TAM subset was present in human breast carcinomas and bone metastases after chemotherapy. Although a small proportion of M2 TAMs were also present in hypoxic tumor areas, when we genetically ablated their ability to respond to hypoxia via hypoxia-inducible factors 1 and 2, tumor relapse was unaffected. TAMs were the predominant cells expressing immunoreactive CXCR4 in chemotherapy-treated mouse tumors, with the highest levels expressed by MRC1(+) TAMs clustering around the tumor vasculature. Furthermore, the primary CXCR4 ligand, CXCL12, was upregulated in these perivascular sites after chemotherapy, where it was selectively chemotactic for MRC1(+) TAMs. Interestingly, HMOX-1, a marker of oxidative stress, was also upregulated in perivascular areas after chemotherapy. This enzyme generates carbon monoxide from the breakdown of heme, a gas known to upregulate CXCL12. Finally, pharmacologic blockade of CXCR4 selectively reduced M2-related TAMs after chemotherapy, especially those in direct contact with blood vessels, thereby reducing tumor revascularization and regrowth. Our studies rationalize a strategy to leverage chemotherapeutic efficacy by selectively targeting this perivascular, relapse-promoting M2-related TAM cell population.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.