50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inhibition of growth signaling pathways protects against aging and age-related diseases in parallel with reduced oxidative stress. The relationships between growth signaling, oxidative stress and aging remain unclear. Here we report that in Saccharomyces cerevisiae, alterations in growth signaling pathways impact levels of superoxide anions that promote chronological aging and inhibit growth arrest of stationary phase cells in G0/G1. Factors that decrease intracellular superoxide anions in parallel with enhanced longevity and more efficient G0/G1 arrest include genetic inactivation of growth signaling pathways that inhibit Rim15p, which activates oxidative stress responses, and downregulation of these pathways by caloric restriction. Caloric restriction also reduces superoxide anions independently of Rim15p by elevating levels of H 2O 2, which activates superoxide dismutases. In contrast, high glucose or mutations that activate growth signaling accelerate chronological aging in parallel with increased superoxide anions and reduced efficiency of stationary phase G0/G1 arrest. High glucose also activates DNA damage responses and preferentially kills stationary phase cells that fail to arrest growth in G0/G1. These findings suggest that growth signaling promotes chronological aging in budding yeast by elevating superoxide anions that inhibit quiescence and induce DNA replication stress. A similar mechanism likely contributes to aging and age-related diseases in complex eukaryotes.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          AMP-activated protein kinase induces a p53-dependent metabolic checkpoint.

          Replicative cell division is an energetically demanding process that can be executed only if cells have sufficient metabolic resources to support a doubling of cell mass. Here we show that proliferating mammalian cells have a cell-cycle checkpoint that responds to glucose availability. The glucose-dependent checkpoint occurs at the G(1)/S boundary and is regulated by AMP-activated protein kinase (AMPK). This cell-cycle arrest occurs despite continued amino acid availability and active mTOR. AMPK activation induces phosphorylation of p53 on serine 15, and this phosphorylation is required to initiate AMPK-dependent cell-cycle arrest. AMPK-induced p53 activation promotes cellular survival in response to glucose deprivation, and cells that have undergone a p53-dependent metabolic arrest can rapidly reenter the cell cycle upon glucose restoration. However, persistent activation of AMPK leads to accelerated p53-dependent cellular senescence. Thus, AMPK is a cell-intrinsic regulator of the cell cycle that coordinates cellular proliferation with carbon source availability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Living on a break: cellular senescence as a DNA-damage response.

            Cellular senescence is associated with ageing and cancer in vivo and has a proven tumour-suppressive function. Common to both ageing and cancer is the generation of DNA damage and the engagement of the DNA-damage response pathways. In this Review, the diverse mechanisms that lead to DNA-damage generation and the activation of DNA-damage-response signalling pathways are discussed, together with the evidence for their contribution to the establishment and maintenance of cellular senescence in the context of organismal ageing and cancer development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?

              Mammalian AMP-activated protein kinase and yeast SNF1 protein kinase are the central components of kinase cascades that are highly conserved between animals, fungi, and plants. The AMP-activated protein kinase cascade acts as a metabolic sensor or "fuel gauge" that monitors cellular AMP and ATP levels because it is activated by increases in the AMP:ATP ratio. Once activated, the enzyme switches off ATP-consuming anabolic pathways and switches on ATP-producing catabolic pathways, such as fatty acid oxidation. The SNF1 complex in yeast is activated in response to the stress of glucose deprivation. In this case the intracellular signal or signals have not been identified; however, SNF1 activation is associated with depletion of ATP and elevation of AMP. The SNF1 complex acts primarily by inducing expression of genes required for catabolic pathways that generate glucose, probably by triggering phosphorylation of transcription factors. SNF1-related protein kinases in higher plants are likely to be involved in the response of plant cells to environmental and/or nutritional stress.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                ImpactJ
                Aging (Albany NY)
                Impact Journals LLC
                1945-4589
                October 2010
                27 October 2010
                : 2
                : 10
                : 709-726
                Affiliations
                1 Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
                2 Instituto de Investigação em Ciências da Vida e Saúde (ICVS), Escola de Ciências da Saúde, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
                3 Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
                Author notes
                Corresponding author: William C. Burhans, PhD; wburhans@ 123456buffalo.edu
                Article
                2993800
                21076178
                f88957ba-b4cc-4825-8f86-1968602d491a
                Copyright: © 2010 Weinberger et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 14 October 2010
                : 25 October 2010
                Categories
                Research Paper

                Cell biology
                replication stress,hydrogen peroxide,lifespan,oxidative stress,caloric restriction
                Cell biology
                replication stress, hydrogen peroxide, lifespan, oxidative stress, caloric restriction

                Comments

                Comment on this article