17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbiome as a Key Player in Sustainable Agriculture and Human Health

      , , , , ,
      Frontiers in Soil Science
      Frontiers Media SA

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aggregate of microorganisms in the soil environment is a microbiome that emerged as a vital component of sustainable agriculture in the recent past. These beneficial microorganisms perform multiple plant growth-promoting activities including fixation, mineralization, solubilization, and mobilization of nutrients, production of siderophores, antagonistic substances, antibiotics, and release of plant growth-promoting substances, such as auxin and gibberellin hormones, mediated by interactions between host plant roots and microbes in the rhizosphere. Numerous plant species forms symbiotic association with microbes and draw the benefit of mineral nutrient supply with the expense of minimal energy, and their distribution is governed by nature and the number of root exudates, crop species, and cultivars. On the other hand, microorganisms with critical roles in the microbiome can be isolated, formulated, and developed as a new biological product called biofertilizers. Agriculturally, important microbes with Fe- and Zn-solubilizing attributes can be used for the biofortification of micronutrients in different cereal crops. Regardless of the approach to be used, innovations with the use of microbiomes represent the future of sustainable agriculture. Probiotic microbes, such as Lactobacillus, etc., are increasingly being used as dietary supplements in functional food products. Effective utilization of microbiome aids in promoting sustainable agriculture that accomplishes a safe environment, which in turn manifests positively on human health.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The biomass distribution on Earth

          Significance The composition of the biosphere is a fundamental question in biology, yet a global quantitative account of the biomass of each taxon is still lacking. We assemble a census of the biomass of all kingdoms of life. This analysis provides a holistic view of the composition of the biosphere and allows us to observe broad patterns over taxonomic categories, geographic locations, and trophic modes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.

            Microbes are the unseen majority in soil and comprise a large portion of life's genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogen-fixing bacteria are responsible for c. 5-20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rhizosphere bacteria help plants tolerate abiotic stress.

              Plant-growth-promoting rhizobacteria (PGPR) are associated with plant roots and augment plant productivity and immunity; however, recent work by several groups shows that PGPR also elicit so-called 'induced systemic tolerance' to salt and drought. As we discuss here, PGPR might also increase nutrient uptake from soils, thus reducing the need for fertilizers and preventing the accumulation of nitrates and phosphates in agricultural soils. A reduction in fertilizer use would lessen the effects of water contamination from fertilizer run-off and lead to savings for farmers.
                Bookmark

                Author and article information

                Journal
                Frontiers in Soil Science
                Front. Soil Sci.
                Frontiers Media SA
                2673-8619
                April 11 2022
                April 11 2022
                : 2
                Article
                10.3389/fsoil.2022.821589
                e7e6dbe0-bf90-4122-b127-76bafd664f47
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article