4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ultra pH-sensitive nanocarrier based on Fe2O3/chitosan/montmorillonite for quercetin delivery

      , , , ,
      International Journal of Biological Macromolecules
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer nanomedicine: progress, challenges and opportunities

          The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quercetin, Inflammation and Immunity

            In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modeling and comparison of dissolution profiles.

              Over recent years, drug release/dissolution from solid pharmaceutical dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolution occurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematical formulas that express the dissolution results as a function of some of the dosage forms characteristics are used. In some cases, these mathematic models are derived from the theoretical analysis of the occurring process. In most of the cases the theoretical concept does not exist and some empirical equations have proved to be more appropriate. Drug dissolution from solid dosage forms has been described by kinetic models in which the dissolved amount of drug (Q) is a function of the test time, t or Q=f(t). Some analytical definitions of the Q(t) function are commonly used, such as zero order, first order, Hixson-Crowell, Weibull, Higuchi, Baker-Lonsdale, Korsmeyer-Peppas and Hopfenberg models. Other release parameters, such as dissolution time (tx%), assay time (tx min), dissolution efficacy (ED), difference factor (f1), similarity factor (f2) and Rescigno index (xi1 and xi2) can be used to characterize drug dissolution/release profiles.
                Bookmark

                Author and article information

                Journal
                International Journal of Biological Macromolecules
                International Journal of Biological Macromolecules
                Elsevier BV
                01418130
                November 2021
                November 2021
                : 191
                : 738-745
                Article
                10.1016/j.ijbiomac.2021.09.023
                a1b4a6bc-01f3-4b03-96ab-218a44974b85
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article