69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Cell Host & Microbe
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Summary The acquisition and development of the infant microbiome are key to establishing a healthy host-microbiome symbiosis. The maternal microbial reservoir is thought to play a crucial role in this process. However, the source and transmission routes of the infant pioneering microbes are poorly understood. To address this, we longitudinally sampled the microbiome of 25 mother-infant pairs across multiple body sites from birth up to 4 months postpartum. Strain-level metagenomic profiling showed a rapid influx of microbes at birth followed by strong selection during the first few days of life. Maternal skin and vaginal strains colonize only transiently, and the infant continues to acquire microbes from distinct maternal sources after birth. Maternal gut strains proved more persistent in the infant gut and ecologically better adapted than those acquired from other sources. Together, these data describe the mother-to-infant microbiome transmission routes that are integral in the development of the infant microbiome.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data.

          Heng Li (2011)
          Most existing methods for DNA sequence analysis rely on accurate sequences or genotypes. However, in applications of the next-generation sequencing (NGS), accurate genotypes may not be easily obtained (e.g. multi-sample low-coverage sequencing or somatic mutation discovery). These applications press for the development of new methods for analyzing sequence data with uncertainty. We present a statistical framework for calling SNPs, discovering somatic mutations, inferring population genetical parameters and performing association tests directly based on sequencing data without explicit genotyping or linkage-based imputation. On real data, we demonstrate that our method achieves comparable accuracy to alternative methods for estimating site allele count, for inferring allele frequency spectrum and for association mapping. We also highlight the necessity of using symmetric datasets for finding somatic mutations and confirm that for discovering rare events, mismapping is frequently the leading source of errors. http://samtools.sourceforge.net. hengli@broadinstitute.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The microbiome and innate immunity.

            The intestinal microbiome is a signalling hub that integrates environmental inputs, such as diet, with genetic and immune signals to affect the host's metabolism, immunity and response to infection. The haematopoietic and non-haematopoietic cells of the innate immune system are located strategically at the host-microbiome interface. These cells have the ability to sense microorganisms or their metabolic products and to translate the signals into host physiological responses and the regulation of microbial ecology. Aberrations in the communication between the innate immune system and the gut microbiota might contribute to complex diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbiota-mediated colonization resistance against intestinal pathogens.

              Commensal bacteria inhabit mucosal and epidermal surfaces in mice and humans, and have effects on metabolic and immune pathways in their hosts. Recent studies indicate that the commensal microbiota can be manipulated to prevent and even to cure infections that are caused by pathogenic bacteria, particularly pathogens that are broadly resistant to antibiotics, such as vancomycin-resistant Enterococcus faecium, Gram-negative Enterobacteriaceae and Clostridium difficile. In this Review, we discuss how immune- mediated colonization resistance against antibiotic-resistant intestinal pathogens is influenced by the composition of the commensal microbiota. We also review recent advances characterizing the ability of different commensal bacterial families, genera and species to restore colonization resistance to intestinal pathogens in antibiotic-treated hosts.
                Bookmark

                Author and article information

                Journal
                Cell Host & Microbe
                Cell Host & Microbe
                Elsevier BV
                19313128
                July 2018
                July 2018
                : 24
                : 1
                : 133-145.e5
                Article
                10.1016/j.chom.2018.06.005
                9df61ee9-f7d3-4c42-af63-a20cc9d82c52
                © 2018

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article