32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimal unified combination rule in application of Dempster-Shafer theory to lung cancer radiotherapy dose response outcome analysis.

      Journal of applied clinical medical physics
      American College of Medical Physics (ACMP)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our previous study demonstrated the application of the Dempster-Shafer theory of evidence to dose/volume/outcome data analysis. Specifically, it provided Yager's rule to fuse data from different institutions pertaining to radiotherapy pneumonitis versus mean lung dose. The present work is a follow-on study that employs the optimal unified combination rule, which optimizes data similarity among independent sources. Specifically, we construct belief and plausibility functions on the lung cancer radiotherapy dose outcome datasets, and then apply the optimal unified combination rule to obtain combined belief and plausibility, which bound the probabilities of pneumonitis incidence. To estimate the incidence of pneumonitis at any value of mean lung dose, we use the Lyman-Kutcher-Burman (LKB) model to fit the combined belief and plausibility curves. The results show that the optimal unified combination rule yields a narrower uncertainty range (as represented by the belief-plausibility range) than Yager's rule, which is also theoretically proven.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Use of normal tissue complication probability models in the clinic.

          The Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) review summarizes the currently available three-dimensional dose/volume/outcome data to update and refine the normal tissue dose/volume tolerance guidelines provided by the classic Emami et al. paper published in 1991. A "clinician's view" on using the QUANTEC information in a responsible manner is presented along with a description of the most commonly used normal tissue complication probability (NTCP) models. A summary of organ-specific dose/volume/outcome data, based on the QUANTEC reviews, is included. Copyright 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Radiation dose-volume effects in the lung.

            The three-dimensional dose, volume, and outcome data for lung are reviewed in detail. The rate of symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident threshold "tolerance dose-volume" levels. There are strong volume and fractionation effects. Copyright 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues.

              Advances in dose-volume/outcome (or normal tissue complication probability, NTCP) modeling since the seminal Emami paper from 1991 are reviewed. There has been some progress with an increasing number of studies on large patient samples with three-dimensional dosimetry. Nevertheless, NTCP models are not ideal. Issues related to the grading of side effects, selection of appropriate statistical methods, testing of internal and external model validity, and quantification of predictive power and statistical uncertainty, all limit the usefulness of much of the published literature. Synthesis (meta-analysis) of data from multiple studies is often impossible because of suboptimal primary analysis, insufficient reporting and variations in the models and predictors analyzed. Clinical limitations to the current knowledge base include the need for more data on the effect of patient-related cofactors, interactions between dose distribution and cytotoxic or molecular targeted agents, and the effect of dose fractions and overall treatment time in relation to nonuniform dose distributions. Research priorities for the next 5-10 years are proposed. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                26894343
                5690231
                10.1120/jacmp.v17i1.5737

                Comments

                Comment on this article