19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plk1 overexpression induces chromosomal instability and suppresses tumor development

      Nature Communications
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene.

          Oncogenic mutations in the small GTPase Ras are highly prevalent in cancer, but an understanding of the vulnerabilities of these cancers is lacking. We undertook a genome-wide RNAi screen to identify synthetic lethal interactions with the KRAS oncogene. We discovered a diverse set of proteins whose depletion selectively impaired the viability of Ras mutant cells. Among these we observed a strong enrichment for genes with mitotic functions. We describe a pathway involving the mitotic kinase PLK1, the anaphase-promoting complex/cyclosome, and the proteasome that, when inhibited, results in prometaphase accumulation and the subsequent death of Ras mutant cells. Gene expression analysis indicates that reduced expression of genes in this pathway correlates with increased survival of patients bearing tumors with a Ras transcriptional signature. Our results suggest a previously underappreciated role for Ras in mitotic progression and demonstrate a pharmacologically tractable pathway for the potential treatment of cancers harboring Ras mutations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis.

            The mitotic checkpoint is a major cell cycle control mechanism that guards against chromosome missegregation and the subsequent production of aneuploid daughter cells. Most cancer cells are aneuploid and frequently missegregate chromosomes during mitosis. Indeed, aneuploidy is a common characteristic of tumours, and, for over 100 years, it has been proposed to drive tumour progression. However, recent evidence has revealed that although aneuploidy can increase the potential for cellular transformation, it also acts to antagonize tumorigenesis in certain genetic contexts. A clearer understanding of the tumour suppressive function of aneuploidy might reveal new avenues for anticancer therapy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Polo-like kinases and the orchestration of cell division.

                Bookmark

                Author and article information

                Journal
                10.1038/s41467-018-05429-5
                http://creativecommons.org/licenses/by/4.0

                Comments

                Comment on this article