87
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modeling exposure–lag–response associations with distributed lag non-linear models

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In biomedical research, a health effect is frequently associated with protracted exposures of varying intensity sustained in the past. The main complexity of modeling and interpreting such phenomena lies in the additional temporal dimension needed to express the association, as the risk depends on both intensity and timing of past exposures. This type of dependency is defined here as exposure–lag–response association. In this contribution, I illustrate a general statistical framework for such associations, established through the extension of distributed lag non-linear models, originally developed in time series analysis. This modeling class is based on the definition of a cross-basis, obtained by the combination of two functions to flexibly model linear or nonlinear exposure-responses and the lag structure of the relationship, respectively. The methodology is illustrated with an example application to cohort data and validated through a simulation study. This modeling framework generalizes to various study designs and regression models, and can be applied to study the health effects of protracted exposures to environmental factors, drugs or carcinogenic agents, among others. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Models for the relationship between ambient temperature and daily mortality.

          Ambient temperature is an important determinant of daily mortality that is of interest both in its own right and as a confounder of other determinants investigated using time-series regressions, in particular, air pollution. The temperature-mortality relationship is often found to be substantially nonlinear and to persist (but change shape) with increasing lag. We review and extend models for such nonlinear multilag forms. Popular models for mortality by temperature at given lag include polynomial and natural cubic spline curves, and the simple but more easily interpreted linear thresholds model, comprising linear relationships for temperatures below and above thresholds and a flat middle section. Most published analyses that have allowed the relationship to persist over multiple lags have done so by assuming that spline or threshold models apply to mean temperature in several lag strata (e.g., lags 0-1, 2-6, and 7-13). However, more flexible models are possible, and a modeling framework using products of basis functions ("cross-basis" functions) suggests a wide range, some used previously and some new. These allow for stepped or smooth changes in the model coefficients as lags increase. Applying a range of models to data from London suggest evidence for relationships up to at least 2 weeks' lag, with smooth models fitting best but lag-stratified threshold models allowing the most direct interpretation. A wide range of multilag nonlinear temperature-mortality relationships can be modeled. More awareness of options should improve investigation of these relationships and help control for confounding by them.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The distributed lag between air pollution and daily deaths.

            Many studies have reported associations between air pollution and daily deaths. Those studies have not consistently specified the lag between exposure and response, although most have found associations that persisted for more than 1 day. A systematic approach to specifying the lag association would allow better comparison across sites and give insight into the nature of the relation. To examine this question, I fit unconstrained and constrained distributed lag relations to the association between daily deaths of persons 65 years of age and older with PM10 in 10 U.S. cities (New Haven, Birmingham, Pittsburgh, Canton, Detroit, Chicago, Minneapolis, Colorado Springs, Spokane, and Seattle) that had daily monitoring for PM10. After control for temperature, humidity, barometric pressure, day of the week, and seasonal patterns, I found evidence in each city that the effect of a single day's exposure to PM10 was manifested across several days. Averaging over the 10 cities, the overall effect of an increase in exposure of 10 microg/m3 on a single day was a 1.4% increase in deaths (95% confidence intervals (CI) = 1.15-1.68) using a quadratic distributed lag model, and a 1.3% increase (95% CI = 1.04-1.56) using an unconstrained distributed lag model. In contrast, constraining the model to assume the effect all occurs in one day resulted in an estimate of only 0.65% (95% CI = 0.49-0.81), indicating that this constraint leads to a substantial underestimate of effect. Combining the estimated effect at each day's lag across the 10 cities showed that the effect was spread over several days and did not reach zero until 5 days after the exposure. Given the distribution of sensitivities likely in the general population, this result is biologically plausible. I also found a protective effect of barometric pressure in all 10 locations.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Distributed Lag Between Capital Appropriations and Expenditures

                Bookmark

                Author and article information

                Journal
                Stat Med
                Stat Med
                sim
                Statistics in Medicine
                BlackWell Publishing Ltd (Oxford, UK )
                0277-6715
                1097-0258
                28 February 2014
                12 September 2013
                : 33
                : 5
                : 881-899
                Affiliations
                Medical Statistics Department, London School of Hygiene and Tropical Medicine London, U.K.
                Author notes
                *Correspondence to: Antonio Gasparrini, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
                Article
                10.1002/sim.5963
                4098103
                24027094
                78ed6cdd-b491-4e35-979a-b46bb12b12a7
                © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 March 2012
                : 10 August 2013
                Categories
                Research Articles

                Biostatistics
                latency,distributed lag models,exposure–lag–response,delayed effects,splines
                Biostatistics
                latency, distributed lag models, exposure–lag–response, delayed effects, splines

                Comments

                Comment on this article