28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Solid state fermentation with Trametes versicolor was carried out on agricultural wastes containing bisphenol A (BPA). It was found that BPA degradation was along with the occurrence of laccase production, and wheat bran and corn straw were identified as suitable mixed substrates for laccase production. In the process of BPA degradation with T. versicolor, laccase activity increased rapidly at the 6th–10th day after inoculation. Moreover, BPA can enhance the production of laccase. After 10 days of fermentation, degradation rate of BPA exceeded 90% without the usage of mediators ABTS and acetosyringone at pH 4.0–8.0. In addition, metal ions did not affect the BPA degradation with T. versicolor. In vitro, the optimum pH range of BPA degradation with laccase was in the acidic region with the optimal performance of pH 5.0. Metal ions Cu 2+, Zn 2+, and Co 2+ showed little effect on BPA degradation. However, Fe 3+ and Fe 2+ substantially inhibited the BPA degradation. Natural mediator acetosyringone showed optimum enhancement on BPA degradation. Greater than 90% of the estrogenic activity of BPA was removed by T. versicolor and its laccase. Compared to in vitro degradation with laccase, this study shows that the process of simultaneous laccase production and BPA degradation with T. versicolor was more advantageous since BPA can enhance the laccase production, mediators were unnecessary, degradation rate was not affected by metal ions, and the applicable pH range was broader. This study concludes that T. versicolor and laccase have great potential to treat industrial wastewater containing BPA.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          A review of the environmental fate, effects, and exposures of bisphenol A.

          Bisphenol A (CAS 85-05-7) may be released into the environment through its use and handling, and permitted discharges. BPA is moderately soluble (120 to 300 mg/L at pH 7), may adsorb to sediment (Koc 314 to 1524), has low volatility, and is not persistent based on its rapid biodegradation in acclimated wastewater treatment plants and receiving waters (half-lives 2.5 to 4 days). BPA is "slightly to moderately" toxic (algal EC50 of 1000 micrograms/L) and has low potential for bioaccumulation in aquatic organisms (BCFs 5 to 68). The chronic NOEC for Daphnia magna is > 3146 micrograms/L. Surface water concentrations are at least one to several orders of magnitude lower than chronic effects, with most levels nondetected.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Laccase: new functions for an old enzyme

            A. Mayer (2002)
            Laccases occur widely in fungi; they have been characterized less frequently in higher plants. Here we have focused on more recent reports on the occurrence of laccase and its functions in physiological development and industrial utility. The reports of molecular weights, pH optima, and substrate specificity are extremely diverse. Conclusive proof of the occurrence of laccase in a tissue must demonstrate that the enzyme be able to oxidize quinol with concomitant uptake of oxygen. Laccase is involved in the pigmentation process of fungal spores, the regeneration of tobacco protoplasts, as fungal virulence factors, and in lignification of cell walls and delignification during white rot of wood. Commercially, laccases have been used to delignify woody tissues, produce ethanol, and to distinguish between morphine and codeine. A very wide variety of bioremediation processes employ laccase in order to protect the environment from damage caused by industrial effluents. Research in recent years has been intense, much of it elicited by the wide diversity of laccases, their utility and their very interesting enzymology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers.

              Laccase is a polyphenol oxidase, which belongs to the family of blue multicopper oxidases. These enzymes catalyze the one-electron oxidation of four reducing-substrate molecules concomitant with the four-electron reduction of molecular oxygen to water. Laccases oxidize a broad range of substrates, preferably phenolic compounds. In the presence of mediators, fungal laccases exhibit an enlarged substrate range and are then able to oxidize compounds with a redox potential exceeding their own. Until now, only one crystal structure of a laccase in an inactive, type-2 copper-depleted form has been reported. We present here the first crystal structure of an active laccase containing a full complement of coppers, the complete polypeptide chain together with seven carbohydrate moieties. Despite the presence of all coppers in the new structure, the folds of the two laccases are quite similar. The coordination of the type-3 coppers, however, is distinctly different. The geometry of the trinuclear copper cluster in the Trametes versicolor laccase is similar to that found in the ascorbate oxidase and that of mammalian ceruloplasmin structures, suggesting a common reaction mechanism for the copper oxidation and the O(2) reduction. In contrast to most blue copper proteins, the type-1 copper in the T. versicolor laccase has no axial ligand and is only 3-fold coordinated. Previously, a modest elevation of the redox potential was attributed to the lack of an axial ligand. Based on the present structural data and sequence comparisons, a mechanism is presented to explain how laccases could tune their redox potential by as much as 200 mV.
                Bookmark

                Author and article information

                Contributors
                +86 571 87951840 , xialm@zju.edu.cn
                Journal
                Bioprocess Biosyst Eng
                Bioprocess Biosyst Eng
                Bioprocess and Biosystems Engineering
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1615-7591
                1615-7605
                23 May 2017
                23 May 2017
                2017
                : 40
                : 8
                : 1237-1245
                Affiliations
                ISNI 0000 0004 1759 700X, GRID grid.13402.34, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, , Zhejiang University, ; Hangzhou, 310027 China
                Article
                1783
                10.1007/s00449-017-1783-1
                5511595
                28536853
                991206ef-2a27-40df-8bc7-80f702d6c00b
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 27 November 2016
                : 10 May 2017
                Funding
                Funded by: FundRef 10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 21676247
                Categories
                Research Paper
                Custom metadata
                © Springer-Verlag GmbH Germany 2017

                Biomedical engineering
                bisphenol a,laccase,solid state fermentation,agricultural wastes,trametes versicolor

                Comments

                Comment on this article